Implementierung von FastSLAM 2.0 und Tests in Outdoor-Simulationsumgebungen
Autor: | Benjamin Dilly |
Modul: | Bachelorarbeit, MTR-B-2-7.01 |
Starttermin: | TBD |
Abgabetermin: | TBD |
Prüfungsform: | Modulabschlussprüfung als schriftliche Dokumentation (Bachelorarbeit) im Umfang von 30 bis 60 Seiten Textteil und Präsentation (15 Minuten) zzgl. Kolloquiumsdiskussion (15-30 Minuten). |
Betreuer: | Prof. Dr.-Ing. Schneider, Tel. 806 |
Mitarbeiter: | Marc Ebmeyer, Tel. 847 |
Einleitung
Algorithmen zur simultanen Lokalisierung und Kartographierung (SLAM) sind ein wichtiger Bestandteil in der mobilen Robotik. Da heutzutage meist hochauflösende Laserscanner eingesetzt werden, haben sich Scan-Matching basierende SLAM-Algorithmen für die Indoor-Anwendung durchgesetzt. Jedoch scheitern diese Algorithmen in unstrukturierten und spärlich belegten Umgebungen (kaum bis keine Wände, geringe Anzahl an Messpunkte durch den Laserscanner), wie es im Outdoor-Bereich der Fall ist. Eine Möglichkeit, um in dieser Umgebung zu navigieren, ist die Verwendung eines Landmarken-basierenden SLAM-Verfahrens. Eines dieser Verfahren ist FastSLAM 2.0, das markante Umgebungsmerkmale (Features) mithilfe einer Gaußverteilung modelliert. Die verschiedenen Möglichkeiten der Trajektorie als auch der gesamten Karte werden durch Partikel abgebildet (siehe [1]) Da in einem industriellen Umfeld sowohl Indoor als auch Outdoor-Navigation verlangt wird, sollen beide SLAM-Algorithmen bei Hanning zum Einsatz kommen.
Aufgabenstellung
Anforderungen an die wissenschaftliche Arbeit
- Wissenschaftliche Vorgehensweise (Projektplan, etc.), nützlicher Artikel: Gantt Diagramm erstellen
- Wöchentlicher Fortschrittsberichte (informativ), aktualisieren Sie das Besprechungsprotokoll - Live Gespräch mit Prof. Schneider
- Projektvorstellung im Wiki
- Tägliche Sicherung der Arbeitsergebnisse in SVN
- Tägliche Dokumentation der geleisteten Arbeitsstunden
- Studentische Arbeiten bei Prof. Schneider
- Anforderungen an eine wissenschaftlich Arbeit
SVN-Repositorium
Getting started
Lesen Sie zum Einstieg diese Artikel
- Gantt Diagramm erstellen
- Tipps zum Schreiben eines Wiki-Artikels
- PAP Designer Einstieg
- Einführung in SVN
Quellen
- [http://robots.stanford.edu/papers/Montemerlo03a.pdf Montemerlo, M.; Thrun, S., u.a.: FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous
Localization and Mapping that Provably Converges. In: Proceedings of IJCAI, 2003, S. 1151-1156]
Nützliche Artikel
→ zurück zum Hauptartikel: Studentische Arbeiten