Geschwindigkeitsmessstrecke mit Arduino

Aus HSHL Mechatronik
Zur Navigation springen Zur Suche springen


Author: Syed Rafsan Ishtiaque
Art: Praxissemester
Dauer: 02.05.2023 - 21.08.2023
Betreuer: Prof. Dr.-Ing Ulrich Schneider

Einleitung

Entwicklung der Geschwindigkeitsmesseinheit für jedes Fahrzeugprojekt. Das Messwerkzeug basiert auf Infrarotsensoren, die analoge Daten von einem vorbeifahrenden Auto erhalten und die Daten auf einem Arduino berechnen. Das Ergebnis kann auf einem LCD-Display angezeigt werden.

Anforderungen

Tabelle 1: Funktionale Anforderungen an die Geschwindigkeitsmessstrecke
ID Inhalt Ersteller Datum Geprüft von Datum
1 Die Geschwindigkeit eines vorbeifahrenden RC-Fahrzeugs muss in m/s auf 3 Nachkommastellen genau gemessen werden. Ulrich Schneider 30.06.2023
2 Die Geschwindigkeitsmessstrecke muss im Akkubetrieb laufen. Ulrich Schneider 30.06.2023
3 Die Geschwindigkeitsmessstrecke muss über einen Schalter ein- und ausgeschaltet werden können. Ulrich Schneider 30.06.2023
4 Die Geschwindigkeitsmessstrecke muss auf einem Display auf 2 Nachkommastellen in m/s angezeigt werden. Ulrich Schneider 30.06.2023
5 Der Aufbau muss robust und professionell sein und mind. 10 Jahre betrieben werden können. Alle Verbindungen müssen hierzu zugentlastet sein. Ulrich Schneider 30.06.2023
6 Die Arduino IDE muss für die Programmierung verwendet werden. Die Programmierrrichtlinien sind einzuhalten und der Quelltext ist nachhaltig zu kommentieren. Ulrich Schneider 30.06.2023
7 Der Quelltext ist in SVN zu sichern und in diesem Artikel zu verlinken. Ulrich Schneider 30.06.2023
8 Die Messunsicherheit vom Typ A muss unter 1 % liegen. Beispiel: 1 m/s ± 0,01 m/s (1 𝜎) Ulrich Schneider 13.07.2023

Funktionaler Systementwurf/Technischer Systementwurf

Komponentenspezifikation (Elektronische Komponenten)

Sensor

Sharp 2D120X F 09

Der Sharp Abstandsmesssensor wird verwendet, um die Geschwindigkeit der Kabineneinheit zu bestimmen. In diesem Fall wurden zwei identische Sensoren verwendet. Nach Angaben des Herstellers SHARP [3], Die Reichweite des Sensors beträgt 4 cm bis 30 cm, typische Ansprechzeit ca. 39 ms, typische Einschaltverzögerung ca. 44 ms, durchschnittliche Stromaufnahme: 33 mA. Die Betriebstemperatur beträgt -10°C bis 60°C, was ideal für dieses Projekt ist. Laut dem Stempel auf dem Sensor war das Herstellungsdatum September 2016. Laut Datenblatt sollte der Sensor auf einem beliebigen Rahmen so montiert werden, dass er das optimales Ergebnis liefert. Dazu gibt es eine allgemeine Anleitung auf der Data Sheet [3].


[Aktualisierung]
Wir hatten ein Problem mit dem Sharp D120XF09 Modell des Infrarotsensors. Deshalb haben wir die Infrarotsensoren komplett ausgetauscht. Wir haben ein neues Modell eingesetzt, Sharp 0A41SKF94 [4]

Display

LED-basierte 8-Segment-Anzeige

Der ursprüngliche Plan für das Projekt war eine einfache LED-basierte 8-Segment-Anzeige. Als Referenz, die LED tutorial [5] Leitfaden für Mikrocontroller verwendet wurde. Aber das hatte seine Grenzen. Deshalb haben wir beschlossen, das Display mit C547B transistor [6] . Ein erstes Modell wird mit dem Transistor C547B entwickelt.

[Aktualisierung]
1. Die Schaltung für die LED-Anzeige hat funktioniert. Sie wurde für ein Segment, bestehend aus zwei LED, getestet. Die Versorgungsspannung war 5V, Basiswiderstand 1K Ohm, Kollektorwiderstand 470 Ohm.
2. Wir haben den kompletten Schaltungsaufbau für die LED-Anzeige abgeschlossen. Aber wir werden jetzt eine LCD-Anzeige implementieren. Der Grund dafür ist, dass eine digitale LCD-Anzeige es uns ermöglicht mehr Daten im Zusammenhang mit dem Geschwindigkeitsmesssensor anzuzeigen. Außerdem sind die Daten übertragbar und können für spätere Zwecke gespeichert werden.

LCD-Anzeige Blau mit I²C

Die LCD-Anzeige, die wir verwenden werden, ist QAPASS LCD I²C. Dies ist eine Variante der normalen LCD-Anzeige. Es ist kombiniert mit einer I²C module [9]. Dies wird es uns ermöglichen, dem System weitere Funktionen hinzuzufügen. Die nächste Entwicklung von I²C ist I³C. Sowohl I²C als auch I³C wurden als "Controller"- und "Target"-Bussystem konzipiert (früheres Master- und Slave-Buskonzept). Die beiden Signalleitungen für I²C sind SCL: Serial Clock und SDA: Serielle Datenleitung. Aber wir müssen die distance der Datenübertragung bei Verwendung des I²C. Das LCD-Display ist funktionsfähig. Es empfängt Meldungen und zeigt sie an. Der nächste Schritt wird sein, die Sensordaten zu optimieren und ein robustes System zu entwickeln.

Weiterentwicklung mit display

Anstatt ein LCD-basiertes Display zu verwenden, können wir das MQTT-Protokoll implementieren, um das Endergebnis vom Sensor in unserem Smartphone mit Hilfe des Raspberry Pi zu erhalten. So können wir das Ergebnis bequemer aufzeichnen. Während der Implementierung des MQTT-Protokolls wird das Raspberry Pi-Modul als MQTT-Broker arbeiten und sowohl Arduino als auch Smartphone werden MQTT-Clients sein. Der Broker empfängt Sensordaten vom Arduino (1. Client) und leitet die Nachricht an das Smartphone (2. Client) weiter. Da das System nur dazu verwendet wird, die vom Sensor gesammelten und vom Arduino verarbeiteten Daten zu empfangen und den Sensor nicht zu steuern, wird es unidirektional sein; das bedeutet, dass wir den Teil ausschließen, der jeden Sensor von der Smartphone-Anwendung aus steuern kann.

Externe Energiequelle

Wir haben auch eine externe Stromquelle für die Messeinheit eingeführt. Wir verwenden 6 Stück 1,5-V-Batterien. Die Gesamtspannung beträgt 8,07 V. Die Batterien befinden sich in einem Batteriehalter, der ebenfalls an der Hauptstruktur befestigt ist.


Schalter

Wir haben einen externen SPST-Schalter verwendet, um das Gerät zu steuern. Er wird zwischen der Batterie und dem Arduino angeschlossen.

Arduino-Schild

Unser Hauptmikrocontroller ist ein Arduino Uno. Aber wir haben ein externes Schild auf ihm verwendet. Der Grund für die Verwendung des Shields ist es, all die Drähte von den Sensoren und dem Display mit einer externen Einheit zu verbinden, die wiederum mit dem Haupt-Arduino verbunden ist. Die Verbindung zwischen dem Shield und den verschiedenen Sensoren/Displays/elektronischen Komponenten ist robuster, da wir sie mit Schrauben festziehen können. Auch die Pins des Shields haben wir nach unseren Anforderungen verlötet. Auf diese Weise müssen wir den Haupt-Arduino nicht anlassen, können aber trotzdem die Verdrahtung und die Verbindungen nach unseren Bedürfnissen ändern.

Arduino

Wir haben den Arduino Uno für unser Projekt verwendet. Dies ist ein perfektes Werkzeug für diese Art von Projekt

Umsetzung (Hardware)

LCD-Display-Halter

Um den LCD-Bildschirm an der Hauptstruktur zu befestigen, haben wir eine Halterung in Solidworks entworfen und im 3D-Drucker ausgedruckt. Das Halterungsmodell kann je nach Bedarf aktualisiert werden.



LCD kable zugentlastung

Unser LCD hat 4 Pins. Aber vor, die Drähte mit den Stiften verbunden waren nicht stabil genug. Manchmal hatten wir das Problem, dass die Verbindung nicht kohärent war. Dann haben wir eine kable zugentlastung entwickelt, um das Problem zu lösen. Es gab nur wenige Modelle davon auf dem Markt, aber wir haben sie nach unseren Anforderungen angepasst. Sie wird auf der Rückseite des LCD-Halters montiert.

Abdeckung für Sensor

Um den Infrarotsensor vor Lichtreflexionen zu schützen, haben wir diese 3D-gedruckte Abdeckung angebracht. Diese wird oben auf den Sensor montiert.

Schalterhalter

Wir haben eine Schalterhalterung für die externe Batteriestromquelle der Messeinheit entworfen. Der Halter hatte zwei Ausführungen. Wir haben uns für die zweite Variante entschieden.


Der Grundrahmen

Der Grundrahmen unserer Messeinheit ist aus Holz gefertigt. Wir haben ihn mit Schrauben stabilisiert. Der Rahmen enthält alle Komponenten

Die Kabelrinne

Wir hatten so viele Kabel, die von den Sensoren ausgingen und zur Abschirmung führten. Um unser Gerät stabiler zu machen, haben wir einen Kabelträger eingeführt. Sie fasst alle Kabel in ihrem Inneren.

Umsetzung (Software)

Programmierung

Der Arduino-Code für den Sensor und die LCD-Anzeigen wird entwickelt und implementiert. Wir haben Medianfilter verwendet, um das Rauschen zu unterdrücken/zu begrenzen. Wir werden zwei getrennte Arrays für den Medianfilter erstellen. Für jedes Array gibt es separate Indexzeiger. Daher werden die Daten der beiden Sensoren separat herausgefiltert, sodass sich das Rauschen des einen nicht auf das des anderen auswirkt.
Die nächste Modifikation kann eine bidirektionale Messung sein. Das bedeutet, dass der Geschwindigkeitsmesser die Geschwindigkeit aus beiden Richtungen messen kann.

  • Der Code für dieses Projekt wird auf den SVN-Server hochgeladen

Link zum Quelltext in SVN

Systemtest

Tabelle 3: Systemtest für die Geschwindigkeit
# / m/s 1 2 3 4 5 6 7 8 9 10 /m/s /m/s uA < 1%
1 0,5 0,5 0.498 0.493 0.506 0.506 0.498 0.499 0.503 0.507 0.495 0.495 0,5 0,0017

Matlab-Skript für die Berechnung der Standardunsicherheit vom Typ A

Komponententest

ID Testfallbeschreibung Verschiedene Abstände zwischen dem Fahrzeug und der Messeinheit Erwartetes Ergebnis Testergebnis Testperson Datum
Tabelle 2: Testbericht für den Geschwindigkeitsmessstrecke
1 Das Auto fährt vor der Messeinheit Abstand 0 bis 20 cm
1 Das Auto fährt vor der Messeinheit Abstand 20 bis 40 cm
1 Das Auto fährt vor der Messeinheit Abstand 40 bis 60 cm
1 Das Auto fährt vor der Messeinheit Abstand 60 bis 80 cm


Test im Labor

Wir haben unsere Messeinheit im Labor überprüft. Es misst die Geschwindigkeit eines Objekts, das vor ihm bewegt wird.

Projektunterlagen

Projektplan

Zusammenfassung

Für das Projekt zur Geschwindigkeitsmessung mussten wir zunächst unser Hauptziel herausfinden. Dann mussten wir die verfügbaren Komponenten verwenden. Wenn die Komponenten geändert werden mussten, haben wir auch das getan (Beispiel Shield). Wir mussten den Code für unser Projekt passend machen. Die Implementierung des Filters war eine großartige Idee, um das Rauschen zu unterdrücken. Der Einsatz von Solidworks und 3D-Druck war notwendig, um die Hardware-Teile unseres Projekts realisierbar zu machen. Die Verdrahtung war am Anfang eine kleine Herausforderung. Die Arbeitsmethoden des Lötens wurden mit der Zeit entwickelt. Während des Projekts waren wir mit vielen Einschränkungen konfrontiert. Zum Beispiel hatten wir zunächst den Plan, ein LED-basiertes Display zu verwenden. Dann sind wir zu LCD übergegangen. Wir begannen mit einem anderen Sensor und änderten auch diesen später. Das Shield hat so viele Änderungen erfahren. Selbst als wir alles zusammengebaut hatten und das System nicht funktionierte, haben wir unsere Arbeit auf der Grundlage des aktuellen Szenarios ständig aktualisiert. Wann immer wir auf Komplikationen stießen, haben wir alles noch einmal gründlich überprüft. Wir experimentierten auf verschiedene Weise, um die Probleme und Lösungen herauszufinden. Alle unsere täglichen Arbeiten während des Projekts sind im Tagesprotokoll kurz beschrieben. Wir hatten unser Projekt sehr gut geplant und organisiert. Danke an die unermüdliche Unterstützung von Herrn Ebmeyer. Wir haben verschiedene Labore für verschiedene Zwecke genutzt. Auch die Online-Ressourcen waren hilfreich. Am Ende war es eine sehr schöne, positive Erfahrung in diesem Projekt zu arbeiten.


Literature

  1. Eigenes Dokument
  2. Eigenes Dokument
  3. Hochspringen nach: 3,0 3,1 https://www.pololu.com/file/0J157/GP2D120-DATA-SHEET.pdf
  4. https://global.sharp/products/device/lineup/data/pdf/datasheet/gp2y0a41sk_e.pdf
  5. https://www.mikrocontroller.net/articles/LED
  6. https://datasheetgo.com/c547b-datasheet-npn-transistor/ C547B
  7. Eigenes Dokument
  8. Eigenes Dokument
  9. https://de.wikipedia.org/wiki/I%C2%B2C
  10. Eigenes Dokument
  11. Eigenes Dokument
  12. Eigenes Dokument
  13. Eigenes Dokument
  14. Eigenes Dokument
  15. Eigenes Dokument
  16. Eigenes Dokument
  17. Eigenes Dokument
  18. Eigenes Dokument
  19. Eigenes Dokument
  20. Eigenes Dokument
  21. Eigenes Dokument
  22. Eigenes Dokument
  23. Eigenes Dokument
  24. Eigenes Dokument
  25. Eigenes Dokument
  26. Eigenes Dokument
  27. Eigenes Dokument



→ zurück zum Hauptartikel: Messaufbauten mit Arduino