Regelung des Radschlupfes eines Modellautos: Unterschied zwischen den Versionen
(→HMI) |
|||
Zeile 1.127: | Zeile 1.127: | ||
=== Zwei Sensoren === | === Zwei Sensoren === | ||
{| class="wikitable mw-collapsible mw-collapsed" | |||
! Testfall-ID !! Testfall-Name !! Spezifikations-ID !! Vorbedingungen und Eingänge !! Aktionen !! Erwartetes Ergebnis !! Ergebnis !! Bewertung !! Kommentar | |||
|- | |||
! 001 | |||
| Test des Photointeruptors || 010 || - || Die Lichtschranke des Sensors wird mit einem Blatt Papier unterbrochen || Die LED auf der Sensorplatine erlischt beim unterbrechen der Messstrecke. || Wie Erwartet. || i. O. || | |||
|- | |||
! 002 | |||
| Test des Ausgangs || 020 || - || Eine Lochscheibe wird im Sensor gedreht. Der Digitale und Analoge Ausgang werden mit eine Oszilloskop betrachtet. || Der digitale Ausgang weis eine Rechtecksignal auf. Bei höherer Drehfrequenz erhöht sich ebenfalls die Freqenz des Signals. || Bis zu einer Maximal Drezahl wie Erwartet. || i. O. || Bei zu hoher Drehzahl wird keine Sinal mehr erzeugt. Das Digitale Sinal bleibt dauerhaft auf 0 V. Für die zu entwickelnde Kunsstoffscheibe ergibt sich eine maximale Anzahl an Unterbrechungen. (Weitere Untersuchung in Test 008) | |||
|- | |||
! 003 | |||
| Auslösen von Interupts || 030 || Anschließen des Digitalen Pins des Sensors an Pin 2 des Arduinos || Über die Interutps wird eine Zahl aufaddiert. Die Zahl wird ausgegeben. || Bei jede Unterbrechung der Messstrecke erhöht sich die Zahl. || Wie Erwartet. || i. O. || | |||
|- | |||
! 004 | |||
| Mechansiche Ankopplung || 040 || Die Sensorscheibe wird eingebaut. || Es wird eine Testfahrt durchgeführt. Die Scheiben werden beobachtet. || Die Sensorscheiben bleiben an ihrem Einbau ort und drehen sich mit den Achsen. || Wie Erwartet. || i. O. || | |||
|- | |||
! 005 | |||
| Optische Charakteristik der Ankopplung || 050-070 || || Die Sensorscheibe wird gegen eine helles Licht gehalten. || Die schwarzen stellen lassen kein Licht durch. Die durchsichtigen Stellen lassen Licht durch. || Wie Erwartet. || i. O. || | |||
|- | |||
! 006 | |||
| Test ohen Filterung || 080-100 || Der Sensor wird eingebaut. Das Fahrzeug wird aufgebockt. || Die Hinterachse wird beschleunigt und der Gemessen Wert wird ohne Filterung über Moitor und Tune erachtet. || Es zeigt sich die Drehzahl mit Quantisierungsrauschen. || Wie Erwartet. || i. O. || Überlauf im Messwert (behoben) | |||
|- | |||
! 007 | |||
| Test mit Filterung || 110-120 || || Über die Serielles schnittstelle werden Messdaten mit Filterung ausgegeben. || Das Quansitierungsrauschen aus Test 006 wird herausgefiltert. || Wie Erwartet. || i. O. || | |||
|- | |||
! Anmerkung | |||
| Einheit || 130 || || || || || || Die Einheit wurde nicht überprüft, da in er späteren Reglung der Sensor zweifach verwendet wird. Simit sind evetuelle Abweichungen irrelevant. | |||
|- | |||
! 008 | |||
| Testen verschiedener Sensorscheiben || 020-030 || || Es werden verschieden Sensorscheiben nacheinander getestet. Bei maximaler Drehzahl wird überpfrüft, ob die Bedingung aus Test 002 erfüllt ist. || Eine Scheibe wird ermittelt. || Die Scheiben mit bis zu 3 Unterbrechungen können verwendet werden. || i. O. || | |||
|} | |||
=== HMI === | === HMI === |
Version vom 6. Januar 2023, 17:12 Uhr
Autoren: Mario Wollschläger, Lukas Honerlage
→ zurück zur Übersicht: WS2022: Angewandte Elektrotechnik (BSE)
Einleitung
Das Projekt "Regelung des Radschlupfs eines Modellautos" ist Teil des Praktikums "Angewandte Elektrotechnik" im Studiengang "Business and Systems Engineering (BSE)". Das Ziel des Projekts ist es, eine Lösung zu entwickeln, die es ermöglicht, den Radschlupf eines Modellautos zu regeln und somit das Fahrverhalten des Autos zu verbessern.
Die Raddrehzahl wird dabei mithilfe von Sensoren erfasst, die jeweiligen an den Achsen des Autos angebracht sind. Die erfassten Daten werden an einen Mikrocontroller weitergeleitet, auf dem ein Regelungsalgorithmus ausgeführt wird. Basierend auf dem Ergebnis dieses Algorithmus wird in die Motoransteuerung eingegriffen, um den gewünschten Radschlupf zu erreichen und den Regelkreis zu schließen. Ein wichtiger Aspekt bei der Entwicklung der Regelungslösung ist die Echtzeitfähigkeit. Es ist von entscheidender Bedeutung, dass die Daten zügig an den Regelalgorithmus übertragen werden, damit das Modellauto jederzeit optimal gesteuert werden kann.
Die Umsetzung des Projekts erfolgt nach dem V-Modell, einem bewährten Prozessmodell für die Systementwicklung, das die verschiedenen Phasen von der Anforderungsanalyse bis zur Implementierung strukturiert und dafür sorgt, dass keine wichtigen Schritte übersehen werden.
Anforderungen
ID | Inhalt | Ersteller | Datum | Geprüft von | Datum |
---|---|---|---|---|---|
1.0 | Das System muss den Radschlupf begrenzen, sodass ein vollständiges Durchdrehen der Räder verhindert wird. | Mario Wollschläger | 28.09.2022 | Lukas Honerlage | 29.09.2022 |
1.1 | Die Regelung muss in Echtzeit erfolgen. | Mario Wollschläger | 27.09.2022 | Lukas Honerlage | 27.09.2022 |
2.0 | Das System muss ohne externe Stromversorgung zu betreiben sein. | Mario Wollschläger | 27.09.2022 | Lukas Honerlage | 27.09.2022 |
3.0 | Ein Eingriff in den Motoransteuerung muss für den Nutzer angezeigt werden. | Mario Wollschläger | 27.09.2022 | Lukas Honerlage | 27.09.2022 |
4.0 | Das System muss vollständig im Fahrzeug verbaut werden. | Mario Wollschläger | 27.09.2022 | Lukas Honerlage | 27.09.2022 |
5.0 | Die Regelung muss auf einem Arduino Mikrocontroller ausgeführt werden. | Mario Wollschläger | 27.09.2022 | Lukas Honerlage | 27.09.2022 |
6.0 | Die Erschütterungen dürfen die Funktion des Systems nicht beeinträchtigen. | Mario Wollschläger | 27.09.2022 | Lukas Honerlage | 27.09.2022 |
7.0 | Das System muss ohne Nutzereingaben funktionstüchtig sein. | Mario Wollschläger | 27.09.2022 | Lukas Honerlage | 27.09.2022 |
8.0 | Die Reglung des Radschlupfs muss durch den Nutzer abschaltbar sein. | Mario Wollschläger | 27.09.2022 | Lukas Honerlage | 27.09.2022 |
O.1.0 | Optionale Erweiterung: Bietet eine Möglichkeit, Daten über die Raddrehzahl auszuwerten. | Mario Wollschläger | 29.09.2022 | Lukas Honerlage | 29.09.2022 |
O.2.0 | Optionale Erweiterung: Das System regelt den Randschlupf beim Bremsen des Fahrzeuges. | Mario Wollschläger | 29.09.2022 | Lukas Honerlage | 29.09.2022 |
O.2.1 | Optionale Erweiterung: Das Blockieren der Räder im Fahrbetrieb wird verhindert. | Mario Wollschläger | 29.09.2022 | Lukas Honerlage | 29.09.2022 |
Funktionaler Systementwurf / Technischer Systementwurf
Funktionaler Systementwurf
Im funktionalen Systementwurf wurde das System in mehrere Subkomponenten unterteilt, die jeweils für eine spezifische Teilaufgabe zuständig sind. Durch die Zusammensetzung dieser Komponenten wird die Gesamtaufgabe der Regelung des Radschlupfs erfüllt. Die Unterteilung in spezifische Subkomponenten ermöglicht es, das Gesamtsystem übersichtlich und verständlich zu gestalten und die Entwicklung des Projekts zu strukturieren.
- Raddrehzahlsensor vorn: Diese Komponente misst die Drehzahl der Vorderachse. Auf diese Weise wird die Geschwindigkeit des Fahrzeuges ermittelt.
- Raddrehzahlsensor hinten: Diese Komponente misst die Drehzahl der Hinterachse. Auf diese Weise wird die Geschwindigkeit der angetriebenen Achse ermittelt.
- Arduino: Der Mikrocontrollern wertet die Sensordaten aus und führt den Regelungsalgorithmus aus. Mit dem Ergebnis wird die Motorsteuerung angesteuert.
- Motorsteuerung: Die Motorsteuerung steuert die Energiezufuhr des Motors und begrenzt somit dessen Leistung.
- Human Machine Interface (HMI): Gibt dem Nutzer Informationen über den Status des Systems. Ermöglicht das Abschalten der Regelung.
- Fahrzeug: Das Fahrzeug ist ein Modellauto. Es beinhaltet Antrieb, Fahrwerk und Energieversorgung.
-
Funktionaler Systementwurf - Projektskizze
-
Funktionaler Systementwurf - Signalfluss
Technischer Systementwurf
Alle elektrischen Schnittstellen sind in der folgenden Abbildung zu finden. Eine genauere Beschreibung findet sich in den darauffolgenden Kapiteln. Zudem ist der Regelkreis angegeben.
-
Technischer Systementwurf - Schnittstellen
-
Regelkreis
Raddrehzahlsensor vorne/hinten
Die Komponenten Raddrehzahlsensor vorne und hinten sind identisch und besitzen folgende Eingänge:
Eingänge | Beschreibung | Typ |
VCC | Versorgungsspannung | 5 V |
GND | Masse | 0 V |
Die Komponente besitzt folgende Ausgänge:
Ausgänge | Beschreibung | Typ |
DR0 / DR1 | Digitaler Ausgang | Digital |
Arduino
Die Komponente besitzt folgende Eingänge:
Eingänge | Beschreibung | Typ |
Pin 2 | Drehzahlsensor vorne | Interrupt |
Pin 3 | Drehzahlsensor hinten | Interrupt |
Pin 4 | Schalter zum Ein- und Ausschaltung der Regelung | Digital |
VCC | Versorgungsspannung über Spannungswandler | 5 V |
GND | Masse | 0 V |
Die Komponente besitzt folgende Ausgänge:
Ausgänge | Beschreibung | Typ |
Pin 9 | Motorsteuerung / HMI Regelungsanzeige | PWM |
TX | Serielle Schnittstelle zum Übertragen der Daten an das HMI | Seriell |
Motorsteuerung
Die Komponente besitzt folgende Eingänge:
Eingänge | Beschreibung | Typ |
GND | Masse | 0 V |
DM0 | PWM - Eingang | PWM |
VAC | Versorgungsspannung Fahrzeug | ca. 7,2V |
Die Komponente besitzt folgende Ausgänge:
Ausgänge | Beschreibung | Typ |
DM1 | Steuersignal zur RC-Elektronik (Vorlauf) | PWM |
DM2 | Steuersignal zur RC-Elektronik (Rücklauf) | PWM |
Human Machine Interface (HMI)
Die Komponente besitzt folgende Eingänge:
Eingänge | Beschreibung | Typ |
VCC | Versorgungsspannung | 5 V |
VC3 | Versorgungsspannung | 3,3 V |
GND | Masse | 0 V |
TX | Serielle Schnittstelle zum Empfangen der Daten vom Arduino | Seriell |
Die Komponente besitzt folgende Ausgänge:
Ausgänge | Beschreibung | Typ |
DH1 | System aktivieren/deaktivieren | Digital |
Fahrzeug
Die Komponente besitzt folgende Eingänge:
Eingänge | Beschreibung | Typ |
DM1 | Steuerung des Motors Vorlauf | PWM |
DM2 | Steuerung des Motors Rücklauf | PWM |
Die Komponente besitzt folgende Ausgänge:
Ausgänge | Beschreibung | Typ |
VAV | Motorsteuerungskabel Vorlauf | PWM |
VAR | Motorsteuerungskabel Rücklauf | PWM |
VAC | Versorgungsspannung Fahrzeug | ca. 7,2 V |
GND | Masse des Fahrzeuges | 0 V |
Spannungswandler
Die Komponente besitzt folgende Eingänge:
Eingänge | Beschreibung | Typ |
VAC | Versorgungsspannung Fahrzeug | ca. 7,2 V |
GND | Masse | 0V |
Die Komponente besitzt folgende Ausgänge:
Ausgänge | Beschreibung | Typ |
VCC | Versorgungsspannung | 5 V |
VC3 | Versorgungsspannung | 3,3 V |
GND | Masse | 0V |
Komponentenspezifikation
Auf Basis des Systemen-Wurfes wurden die Komponenten Raddrehzahlsensoren, Human Machine Interface, Regler und Motoransteuerung als neue zu entwickelnden Komponenten identifiziert. Für jenen Komponenten muss einerseits die Hardware und andererseits die Software entwickelt werden. Im Folgenden werden die Komponenten spezifiziert.
Achsdrehzahlsensoren (DRS)
Die Komponente misst die Drehzahl einer Achse. Im Auto werden zwei diese Sensoren verbaut.
Eingänge | Einheit | ||
---|---|---|---|
VCC | Versorgungsspannung | 5 | V |
GND | Masse | 0 | V |
Ausgänge | Einheit | |
---|---|---|
DRS_Drehzahl_f32 | Drehzahl der Achse | U/s |
Parameter | Wert | Einheit | |
---|---|---|---|
Pin | Pin für den angeschlossenen Sensor am Arduino | 2-3 | - |
u | Unterbrechungen des Sensors pro Umdrehung. | 3 | - |
t_M | Zeit für die Mittelwertbildung | 50-100 | ms |
t_T | Systemzeit des Tiefpassfilters | 10-1000 | ms |
Spezifikation
ID | Kapitel | Inhalt | Ersteller | Datum 1 | Durchsicht von | Datum 2 |
---|---|---|---|---|---|---|
1 | Elektronik | |||||
010 | Es wird ein optischer Sensor mit Photointeruptor verwendet. | Lukas Honerlage | 10.10.2022 | Mario Wollschläger | 11.10.2022 | |
020 | Der Sensor gibt zylisch Impulse aus, deren Frequenz proportional zur Drehzahl ist. | Lukas Honerlage | 10.10.2022 | Mario Wollschläger | 11.10.2022 | |
030 | Die Impulse werden an einem Interuptpin des Arduinos aufgenommen. | Lukas Honerlage | 10.10.2022 | Mario Wollschläger | 11.10.2022 | |
2 | Mechanik | |||||
040 | Eine Kunsstoffscheibe wird an das Differenzial des Getriebes angekoppelt. | Mario Wollschläger | 11.10.2022 | Lukas Honerlage | 11.10.2022 | |
050 | Die Kunsstoffscheibe besteht aus durchsichtigem Kunstharz, mit aufgebrachten schwarzen Streifen | Mario Wollschläger | 11.10.2022 | Lukas Honerlage | 11.10.2022 | |
060 | Die Streifer werden mit Achryllack aufgetragen | Mario Wollschläger | 11.10.2022 | Lukas Honerlage | 11.10.2022 | |
070 | Die Komponenten werden mit einem DLP 3D Drucker hergestellt. | Mario Wollschläger | 11.10.2022 | Lukas Honerlage | 11.10.2022 | |
3 | Programmierung | |||||
080 | Die Programmierung erfolgt auschschließlich in Simulink | Mario Wollschläger | 11.10.2022 | Lukas Honerlage | 11.10.2022 | |
090 | Über eine Interupt wird eine vorzeichenlose Ganzzahl hochgezählt | Mario Wollschläger | 11.10.2022 | Lukas Honerlage | 11.10.2022 | |
100 | Vom aktuellen Wert der Ganzzahl wird der Wert von vor n Zyklen abgezogen. Die Anzahl der Zyklen wird aus dem Parameter ausgerechent, welcher die Zeit für die Mittelwertbidlung angibt. | Mario Wollschläger | 11.10.2022 | Lukas Honerlage | 11.10.2022 | |
110 | Die Zahl wird in eine Gleitkommazahl umgewandelt | Mario Wollschläger | 11.10.2022 | Lukas Honerlage | 11.10.2022 | |
120 | Durch einen Tiefpassfilter wird das Quantisierungsrauschen herausgefiltert. | Mario Wollschläger | 11.10.2022 | Lukas Honerlage | 11.10.2022 | |
130 | Der Wert wird in U/s ungerechnet: n*1000/t_M/u | Mario Wollschläger | 11.10.2022 | Lukas Honerlage | 11.10.2022 |
Human Machine Interface (HMI)
Eingänge | Typ | ||
---|---|---|---|
VCC | Versorgungsspannung | 5 | V |
GND | Masse | 0 | V |
DH4 | Schalter" | - | Digital |
Ausgänge | Typ | |
---|---|---|
DM0 | System aktivieren | Digital |
Eingänge ESP8266 | Typ | ||
---|---|---|---|
VCC | Versorgungsspannung | 3,3 | V |
GND | Masse | 0 | V |
RX | Serielle Signale empfangen |
Spezifikation
ID | Kapitel | Inhalt | Ersteller | Datum 1 | Durchsicht von | Datum 2 |
---|---|---|---|---|---|---|
1 | Elektronik | |||||
010 | Die Regelung kann über einen Schalter ein- und ausgeschaltet werden. | Lukas Honerlage | 17.10.2022 | Mario Wollschläger | 20.10.2022 | |
020 | Wenn die Regelung aktiv ist, wird dies über eine LED angezeigt. | Lukas Honerlage | 17.10.2022 | Mario Wollschläger | 20.10.2022 | |
2 | Programmierung | |||||
30 | Der ESP8266 kann sich selbstständig mit einem WLAN-Netz werkt verbinden. | Lukas Honerlage | 17.10.2022 | Mario Wollschläger | 20.10.2022 | |
40 | Der ESP8266 kann die Strings vom Arduino einlesen und an den vordefinierten Stellen trennen und in Variablen speichern. | Lukas Honerlage | 17.10.2022 | Mario Wollschläger | 20.10.2022 | |
050 | Der ESP8266 erzeugt eine HTML-Seite, auf der die empfangenen Daten vom Arduino dargestellt werden können. | Lukas Honerlage | 17.10.2022 | Lukas Honerlage | 20.10.2022 | |
060 | Die HTML-Seite enthält 3 Plots und eine Tabelle zur Darstellung der Daten. | Lukas Honerlage | 17.10.2022 | Lukas Honerlage | 20.10.2022 |
Motoransteuerung (MAS)
Steuert die Leistung des Elektromotors im Modellfahrzeug. Über ein PWM-Signal wird der Motor in seine aktuellen vom Nutzer vorgegebene Leistung begrenzt.
Elektrik
Eingänge | Typ | ||
---|---|---|---|
VCA | Versorgungsspannung Fahrzeug | 5 | V |
GNF | Masse Fahrzeug | 0 | V |
DM0 | PWM Schnittstelle zum Arduino | PWM |
Ausgänge | Typ | |
---|---|---|
DM1 | Schnittstelle zur Leistungselektronik des Fahzeuges Vorlauf | PWM |
DM2 | Schnittstelle zur Leistungselektronik des Fahzeuges Rücklauf | WM |
Simulink
Eingänge | Einheit | |
---|---|---|
MAS_b_PWM_ui8 | 0-255 | PWM |
Ausgänge | Einheit |
---|---|
- |
Parameter | Wert | Einheit | |
---|---|---|---|
Pin | Pin für den Ausgang am Arduino | 9-10 | - |
ID | Kapitel | Inhalt | Ersteller | Datum 1 | Durchsicht von | Datum 2 |
---|---|---|---|---|---|---|
1 | Elektronik | |||||
010 | Ein PWM Signal vom Arduino wird über eine Optokoppler in den Stromkreis des RC-Fahrzeuges übertragen. Der Eingangsstrom wird über einen 330 Ohm Widerstand begrenzt. | Mario Wollschläger | 13.10.2022 | Lukas Honerlage | 13.10.2022 | |
020 | Zur Stromverstärkung des Ausgangs des Optokoppler werden jeweils ein Bipolartransistor für Vor und Rücklauf verwendet. | Mario Wollschläger | 13.10.2022 | Lukas Honerlage | 13.10.2022 | |
030 | Der Basisstrom wird mittels eines Widerstandes von 330 Ohm begrenzt. | Mario Wollschläger | 13.10.2022 | Lukas Honerlage | 13.10.2022 | |
040 | Jeder Bipolartransistor verbindet jeweils ein Gate der N-Kanaltransistoren aus der RC-Elektronik mit der Masse und schaltet diese so sperrend. | Mario Wollschläger | 13.10.2022 | Lukas Honerlage | 13.10.2022 | |
2 | Programmierung | |||||
050 | Die Programmierung erfolgt ausschließlich in Simulink | Mario Wollschläger | 14.10.2022 | Lukas Honerlage | 16.10.2022 | |
060 | Der übergebene Wert wird mittels des PWM-Blocks aus der Simulink Hardwaresupportpackage Libary auf den PWM-Pin gegeben. | Mario Wollschläger | 14.10.2022 | Lukas Honerlage | 16.10.2022 | |
070 | Die PWM-Frequenz wird auf 30 Hz angepasst, um Interferenzen mit dem PWM-Signal der RC-Platine zu vermeiden. | Mario Wollschläger | 15.10.2022 | Lukas Honerlage | 16.10.2022 |
Regler (REG)
Berechnet aus den Drehzahlen von Vorder- und Hinterachse eine Stellgröße für Leistungsbegrenzung des Antriebsmotors.
Simulink
Eingänge | Einheit | ||
---|---|---|---|
REG_n_F_f64 | Drehzahl Vorderachse | U/s | |
REG_n_H_f64 | Drehzahl Hinterachse | U/s |
Ausgänge | Einheit | ||
---|---|---|---|
REG_b_PWM_ui8 | Stellwert für Motoransteuerung | PWM |
Parameter | Wert | Einheit | |
---|---|---|---|
P | P-Anteil des Reglers | - | |
I | I-Anteil des Reglers | - | |
D | D-Anteil des Reglers | - | |
Sollschlupf | Gewollter Schluff (Hinterachsdrehzahl/Vorderachsdrehzahl) | - |
ID | Kapitel | Inhalt | Ersteller | Datum 1 | Durchsicht von | Datum 2 |
---|---|---|---|---|---|---|
1 | Programmierung | |||||
010 | Die Solldrehzahl wird aus der Drehzahl der Vorderachse bestimmt. Diese wird hierfür mit einer Zahl für den Sollschlupf multipliziert. | Mario Wollschläger | 27.10.2022 | Lukas Honerlage | 29.10.2022 | |
020 | Aus der Istdrehzahl (Hinterachse) und der Solldrehzahl wird über einen PID-Regler die Stellgröße ermittelt. | Mario Wollschläger | 27.10.2022 | Lukas Honerlage | 29.10.2022 | |
030 | Der Typ (P / PI / PD / PID) und die entsprechenden Reglerwerte sowie der Sollschlupft werden mittels einer Simulation des Gesamtfahrzeuges und später im Gesamtfahrzug ermittelt. Es wird die Schwingungszeitmethoden nach Ziegler/Nichos verwendet. | Mario Wollschläger | 27.10.2022 | Lukas Honerlage | 29.10.2022 |
Entwicklung
Achsdrehzahlsensoren (DRS)
Hardware
Programmierung
Human Machine Interface (HMI)
Schnittstelle Dashboard
Die Entwicklung einer Wifi-Schnittstelle, die es ermöglicht, Daten live vom Auto anzuzeigen, ist ein wichtiger Teil dieses Projekts. Die Schnittstelle soll über die Kommunikationsschnittstelle des Serial Port des Arduinos erfolgen. Das hat zum einen den Vorteil, dass die Daten direkt über den seriellen Monitor aus der Arduino-Software gelesen werden können, wenn ein Kabel angeschlossen ist. Dies ermöglicht während der Entwicklung des Projekts, die Daten einfach und schnell zu überprüfen. Zum anderen muss keine Veränderung am Code vorgenommen werden, um die Daten über die Wifi-Schnittstelle auszugeben. Dies erleichtert den Prozess erheblich, da keine weiteren Änderungen am Code erforderlich sind, um die Daten anzuzeigen.
Um die Integration der Wifi-Schnittstelle zu vereinfachen, wurde eine einheitliche Schnittstelle festgelegt. Diese besagt, dass ein zu übertragender Byte-String immer mit dem Zeichen A beginnt und mit F endet. Zudem muss nach jedem vollständig übertragenen Parameter ein \n \r folgen. Diese festgelegte Struktur ermöglicht es, die Daten einfach und schnell zu übertragen und zu lesen, ohne dass Verwechslungen entstehen können.
Parameter | Beschreibung |
A | Erstes Zeichen im String, der übertragen wird. |
Parameter 1 | Gibt die Drehzahl der vorderen Reifen an. |
Parameter 2 | Gibt die Drehzahl der hinteren Reifen an. |
Parameter 3 | Gibt die Regeldifferenz an. |
Parameter 4 | Kann frei gewählt werden. |
Parameter 5 | Kann frei gewählt werden. |
Parameter 6 | Kann frei gewählt werden. |
F | Letztes Zeichen im String gibt an, dass die Übertragung abgeschlossen ist. |
Der Code für den ESP8266 wurde auf Plattform Visual Studio Code entwickelt.
/********************************************************************** % Hochschule Hamm-Lippstadt * %********************************************************************** % Modul : WIFIDashboard.INO * % * % Datum : 01. Dezember 2022 * % * % Funktion : WIFI Dashboard für das Projekt Regelung des * % Radschlupfes eines Modellautos * % * % Implementation : Arduino 1.8.19 * % * % Autor : Lukas Honerlage, Mario Wollschläger * % * % Bemerkung : * % * % Letzte Änderung : 23. Dezember 2022 * % * %*********************************************************************/ // Libraries einbinden #include <Arduino.h> #include <ESP8266WiFi.h> #include <ESPAsyncWebServer.h> #include <FS.h> //Wlan Daten const char* ssid = "******"; const char* password = "***************"; //Funktion um den String zu trennen String getValue(String data, char separator, int index) { int found = 0; int strIndex[] = { 0, -1}; int maxIndex = data.length()-1; for(int i=0; i<=maxIndex && found<=index; i++){ if(data.charAt(i)==separator || i==maxIndex){ found++; strIndex[0] = strIndex[1]+1; strIndex[1] = (i == maxIndex) ? i+1 : i; } } return found>index ? data.substring(strIndex[0], strIndex[1]) : ""; } AsyncWebServer server(80); //Variablen anlegen String Drehzahl_1 = "1"; String Drehzahl_2 = "2"; String Regeldiff = "3"; String P = "14"; String I = "15"; String D = "16"; char Byte; // Byte einlesen bool Strf =0; //Nach kompletter Übergabe String den Variablen zuordnen static char buffer[64]; //Speicher reservieren char pos = 0; //Zähler für Postion im Array // Funktionen für zur Übergabe der Zeichenketten an die HTML-Seite String eins() { return String(Drehzahl_1);}; String zwei() { return String(Drehzahl_2);}; String drei() { return String(Regeldiff);}; String vier() { return String(P);}; String fuenf() { return String(I);}; String sechs() { return String(D);}; String sieben() { String data = "{\"P\":\""+String(P)+"\", \"I\":\""+ String(I) +"\", \"D\":\""+ String(D) +"\"}"; return String(data);}; void setup(){ // Serial port für die Kommunikation Serial.begin(115200); // Initialize SPIFFS if(!SPIFFS.begin()){ Serial.println("An Error has occurred while mounting SPIFFS"); return; } // Connect to Wi-Fi WiFi.begin(ssid, password); while (WiFi.status() != WL_CONNECTED) { delay(1000); Serial.println("Connecting to WiFi.."); } // Print IP Adresse Serial.println(WiFi.localIP()); // Route for root / web page server.on("/", HTTP_GET, [](AsyncWebServerRequest *request){ request->send(SPIFFS, "/index.html"); }); server.on("/drehzahlvorne", HTTP_GET, [](AsyncWebServerRequest *request){ request->send_P(200, "text/plain", eins().c_str()); }); server.on("/drehzahlhinten", HTTP_GET, [](AsyncWebServerRequest *request){ request->send_P(200, "text/plain", zwei().c_str()); }); server.on("/regeldiff", HTTP_GET, [](AsyncWebServerRequest *request){ request->send_P(200, "text/plain", drei().c_str()); }); server.on("/regeldifferenz", HTTP_GET, [](AsyncWebServerRequest *request){ request->send_P(200, "text/plain", drei().c_str()); }); server.on("/readADC", HTTP_GET, [](AsyncWebServerRequest *request){ request->send_P(200, "text/plain", sieben().c_str()); }); // Start server server.begin(); } void loop() { // Zeichen einlesen und in buffer Speichern if (Serial.available()) { Byte = Serial.read(); if(Byte == 'A') pos = 0; if(Byte == 'F') Strf = true; if(Byte == -1 || Byte == 'A' || Byte == 'F'); else{ buffer[pos++] = Byte; } } // String auf die Variablen aufteilen // String bei \n trennen if(Strf == true){ Drehzahl_1 = getValue(buffer, '\n', 1); Drehzahl_2 = getValue(buffer, '\n', 2); Regeldiff = getValue(buffer, '\n', 3); P = String(getValue(buffer, '\n', 4)); I = String(getValue(buffer, '\n', 5)); D = String(getValue(buffer, '\n', 6)); //Entfernen unerwünschter Zeichen P.trim(); I.trim(); D.trim(); Strf = false; } }
Html Code mit CSS und Java Skript
<!-- Hochschule Hamm-Lippstadt --> <!-- Modul: WIFIDashboard.INO --> <!-- Datum: 01. Dezember 2022 --> <!-- Funktion: WIFI Dashboard für das Projekt Regelung des Radschlupfes eines Modellautos --> <!-- Implementation: Arduino 1.8.19 --> <!-- Autor: Lukas Honerlage, Mario Wollschläger --> <!-- Bemerkung: --> <!-- Letzte Änderung: 23. Dezember 2022 --> <!DOCTYPE HTML> <html> <head> <meta name="viewport" content="width=device-width, initial-scale=1"> <link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.7.2/css/all.css" integrity="sha384-fnmOCqbTlWIlj8LyTjo7mOUStjsKC4pOpQbqyi7RrhN7udi9RwhKkMHpvLbHG9Sr" crossorigin="anonymous"> <script src="https://code.highcharts.com/highcharts.js"></script> <title>Document</title> <link rel="stylesheet" href="https://fonts.googleapis.com/icon?family=Material+Icons"> <link rel="stylesheet" href="https://code.getmdl.io/1.3.0/material.indigo-pink.min.css"> <script defer src="https://code.getmdl.io/1.3.0/material.min.js"></script> <script src = "https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.7.3/Chart.min.js"></script> <style> .container { background-size: cover; background: rgb(226, 226, 226); background: -moz-linear-gradient(top, rgba(226, 226, 226, 1) 0%, rgba(219, 219, 219, 1) 50%, rgba(209, 209, 209, 1) 51%, rgba(254, 254, 254, 1) 100%); /* FF3.6+ */ background: -webkit-gradient(linear, left top, left bottom, color-stop(0%, rgba(226, 226, 226, 1)), color-stop(50%, rgba(219, 219, 219, 1)), color-stop(51%, rgba(209, 209, 209, 1)), color-stop(100%, rgba(254, 254, 254, 1))); /* Chrome,Safari4+ */ background: -webkit-linear-gradient(top, rgba(226, 226, 226, 1) 0%, rgba(219, 219, 219, 1) 50%, rgba(209, 209, 209, 1) 51%, rgba(254, 254, 254, 1) 100%); /* Chrome10+,Safari5.1+ */ background: -o-linear-gradient(top, rgba(226, 226, 226, 1) 0%, rgba(219, 219, 219, 1) 50%, rgba(209, 209, 209, 1) 51%, rgba(254, 254, 254, 1) 100%); /* Opera 11.10+ */ background: -ms-linear-gradient(top, rgba(226, 226, 226, 1) 0%, rgba(219, 219, 219, 1) 50%, rgba(209, 209, 209, 1) 51%, rgba(254, 254, 254, 1) 100%); /* IE10+ */ background: linear-gradient(to bottom, rgba(226, 226, 226, 1) 0%, rgba(219, 219, 219, 1) 50%, rgba(209, 209, 209, 1) 51%, rgba(254, 254, 254, 1) 100%); /* W3C */ filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#e2e2e2', endColorstr='#fefefe', GradientType=0); /* IE6-9 */ padding: 20px; } canvas{ -moz-user-select: none; -webkit-user-select: none; -ms-user-select: none; } /* Data Table Styling */ #dataTable { font-family: "Trebuchet MS", Arial, Helvetica, sans-serif; border-collapse: collapse; width: 100%; } #dataTable td, #dataTable th { border: 1px solid #ddd; padding: 8px; } #dataTable tr:nth-child(even){background-color: #f2f2f2;} #dataTable tr:hover {background-color: #ddd;} #dataTable th { padding-top: 12px; padding-bottom: 12px; text-align: left; background-color: #4CAF50; color: white; } body { min-width: 310px; max-width: 800px; height: 400px; margin: 0 auto; } h2 { font-family: Arial; font-size: 2.5rem; text-align: center; } h1 { font-family: Arial; font-size: 2.5rem; text-align: center; } h3 { font-family: Arial; font-size: 2.5rem; text-align: left; } h4 { font-family: Arial; font-size: 2.5rem; text-align: right; } </style> </head> <body> <h2>Regelung des Radschlupfes eines Modellautos</h2> <div id="chart-Drehzahl-Vorne" class="container"></div> <div id="chart-Drehzahl-Hinten" class="container"></div> <div id="chart-pressure" class="container"></div> </body> <body> <div style="text-align:center;"><b>Parameter</b></div> <div> <table id="dataTable"> <tr><th>Zeit</th><th>P</th><th>I</th><th>D</th></tr> </table> </div> <br> <script> //Java Skript Code für die Tabelle //Variablen für die Tabelle anlegen var ADCvalues = []; var Tvalues = []; var Hvalues = []; var timeStamp = []; setInterval(window.onload = function() { console.log(new Date().toLocaleTimeString()); }, 100); setInterval(function getData() { var xhttp = new XMLHttpRequest(); xhttp.onreadystatechange = function() { if (this.readyState == 4 && this.status == 200) { //Push the data in array var time = new Date().toLocaleTimeString(); var txt = this.responseText; var obj = JSON.parse(txt); ADCvalues.push(obj.P); Tvalues.push(obj.I); Hvalues.push(obj.D); timeStamp.push(time); //Update Data Table var table = document.getElementById("dataTable"); var row = table.insertRow(1); var cell1 = row.insertCell(0); var cell2 = row.insertCell(1); var cell3 = row.insertCell(2); var cell4 = row.insertCell(3); cell1.innerHTML = time; cell2.innerHTML = obj.P; cell3.innerHTML = obj.I; cell4.innerHTML = obj.D; } }; xhttp.open("GET", "readADC", true); xhttp.send(); }, 100); </script> </body> <script> // Java Skript Code für die Aktualisierung der 3 Charts var chartT = new Highcharts.Chart({ chart: { renderTo: 'chart-Drehzahl-Vorne' }, title: { text: 'Drehzahl Vorne' }, series: [{ showInLegend: false, data: [] }], plotOptions: { line: { animation: false, dataLabels: { enabled: true } }, series: { color: '#059e8a' } }, xAxis: { type: 'datetime', dateTimeLabelFormats: { second: '%H:%M:%S' } }, yAxis: { title: { text: 'Drehzahl 1/s' } }, credits: { enabled: false } }); setInterval(function () { var xhttp = new XMLHttpRequest(); xhttp.onreadystatechange = function () { if (this.readyState == 4 && this.status == 200) { var x = (new Date()).getTime(), y = parseFloat(this.responseText); //console.log(this.responseText); if (chartT.series[0].data.length > 40) { chartT.series[0].addPoint([x, y], true, true, true); } else { chartT.series[0].addPoint([x, y], true, false, true); } } }; xhttp.open("GET", "/drehzahlvorne", true); xhttp.send(); }, 100); var chartH = new Highcharts.Chart({ chart: { renderTo: 'chart-Drehzahl-Hinten' }, title: { text: 'Drehzahl-Hinten' }, series: [{ showInLegend: false, data: [] }], plotOptions: { line: { animation: false, dataLabels: { enabled: true } } }, xAxis: { type: 'datetime', dateTimeLabelFormats: { second: '%H:%M:%S' } }, yAxis: { title: { text: 'Drehzahl 1/s' } }, credits: { enabled: false } }); setInterval(function () { var xhttp = new XMLHttpRequest(); xhttp.onreadystatechange = function () { if (this.readyState == 4 && this.status == 200) { var x = (new Date()).getTime(), y = parseFloat(this.responseText); if (chartH.series[0].data.length > 40) { chartH.series[0].addPoint([x, y], true, true, true); } else { chartH.series[0].addPoint([x, y], true, false, true); } } }; xhttp.open("GET", "/drehzahlhinten", true); xhttp.send(); }, 100); var chartP = new Highcharts.Chart({ chart: { renderTo: 'chart-pressure' }, title: { text: 'Regeldifferenz' }, series: [{ showInLegend: false, data: [] }], plotOptions: { line: { animation: false, dataLabels: { enabled: true } }, series: { color: '#18009c' } }, xAxis: { type: 'datetime', dateTimeLabelFormats: { second: '%H:%M:%S' } }, yAxis: { title: { text: 'Regeldifferenz' } }, credits: { enabled: false } }); setInterval(function () { var xhttp = new XMLHttpRequest(); xhttp.onreadystatechange = function () { if (this.readyState == 4 && this.status == 200) { var x = (new Date()).getTime(), y = parseFloat(this.responseText); if (chartP.series[0].data.length > 40) { chartP.series[0].addPoint([x, y], true, true, true); } else { chartP.series[0].addPoint([x, y], true, false, true); } } }; xhttp.open("GET", "/regeldiff", true); xhttp.send(); }, 100); setInterval(function () { var xhttp = new XMLHttpRequest(); xhttp.onreadystatechange = function () { if (this.readyState == 4 && this.status == 200) { document.getElementById("regeldifferenz").innerHTML = this.responseText; } }; xhttp.open("GET", "/regeldifferenz", true); xhttp.send(); }, 100); </script> </html>
Motoransteuerung (DRS)
Regler (REG)
Platine
Um alle Teilkomponenten eines Systems zu verwalten und anzusteuern, wurde eine Leiterplatte entwickelt. Auf dieser Leiterplatte können alle Komponenten angeschlossen werden. Um die Kommunikation zwischen dem Arduino und den anderen Komponenten zu ermöglichen, wurde eine Neunerstiftleiste angebracht. Von diesen Pins wurden jedoch nur sieben angeschlossen, der Rest dient als Reserve. Die Raddrehzahlsensoren für vorne und hinten werden oben an die 2-Pin-Leisten angeschlossen.
Um den Motor anzusteuern, befinden sich auf der Platine zwei Transistoren, die über ein PWM-Signal den Motorstrom ein- und ausschalten können. Auf der rechten Seite der Platine gibt es zwei Spannungswandler, die die 7,2 Volt der Batterie auf 3,3 V und 5,5 V reduzieren. Über diesen Spannungswandlern wurde eine 2x4-Pin-Leiste angebracht, auf die der ESP8266 01 gesteckt werden kann. An dem unteren Ende der Leiterplatte gibt es vier Anschlüsse für die Motoransteuerung und die Batterieeingangsspannung.
-
Skizze wurde mit PowerPoint erstellt
-
Bild beim Löten der Platine
-
Bild der Fertigen Platine
Gesamtaufbau
Komponententest
Achsdrehzahlsensoren (DRS)
Human Machine Interface (HMI)
Motoransteuerung (DRS)
Regler (REG)
Integrationstest
Zwei Sensoren
Testfall-ID | Testfall-Name | Spezifikations-ID | Vorbedingungen und Eingänge | Aktionen | Erwartetes Ergebnis | Ergebnis | Bewertung | Kommentar |
---|---|---|---|---|---|---|---|---|
001 | Test des Photointeruptors | 010 | - | Die Lichtschranke des Sensors wird mit einem Blatt Papier unterbrochen | Die LED auf der Sensorplatine erlischt beim unterbrechen der Messstrecke. | Wie Erwartet. | i. O. | |
002 | Test des Ausgangs | 020 | - | Eine Lochscheibe wird im Sensor gedreht. Der Digitale und Analoge Ausgang werden mit eine Oszilloskop betrachtet. | Der digitale Ausgang weis eine Rechtecksignal auf. Bei höherer Drehfrequenz erhöht sich ebenfalls die Freqenz des Signals. | Bis zu einer Maximal Drezahl wie Erwartet. | i. O. | Bei zu hoher Drehzahl wird keine Sinal mehr erzeugt. Das Digitale Sinal bleibt dauerhaft auf 0 V. Für die zu entwickelnde Kunsstoffscheibe ergibt sich eine maximale Anzahl an Unterbrechungen. (Weitere Untersuchung in Test 008) |
003 | Auslösen von Interupts | 030 | Anschließen des Digitalen Pins des Sensors an Pin 2 des Arduinos | Über die Interutps wird eine Zahl aufaddiert. Die Zahl wird ausgegeben. | Bei jede Unterbrechung der Messstrecke erhöht sich die Zahl. | Wie Erwartet. | i. O. | |
004 | Mechansiche Ankopplung | 040 | Die Sensorscheibe wird eingebaut. | Es wird eine Testfahrt durchgeführt. Die Scheiben werden beobachtet. | Die Sensorscheiben bleiben an ihrem Einbau ort und drehen sich mit den Achsen. | Wie Erwartet. | i. O. | |
005 | Optische Charakteristik der Ankopplung | 050-070 | Die Sensorscheibe wird gegen eine helles Licht gehalten. | Die schwarzen stellen lassen kein Licht durch. Die durchsichtigen Stellen lassen Licht durch. | Wie Erwartet. | i. O. | ||
006 | Test ohen Filterung | 080-100 | Der Sensor wird eingebaut. Das Fahrzeug wird aufgebockt. | Die Hinterachse wird beschleunigt und der Gemessen Wert wird ohne Filterung über Moitor und Tune erachtet. | Es zeigt sich die Drehzahl mit Quantisierungsrauschen. | Wie Erwartet. | i. O. | Überlauf im Messwert (behoben) |
007 | Test mit Filterung | 110-120 | Über die Serielles schnittstelle werden Messdaten mit Filterung ausgegeben. | Das Quansitierungsrauschen aus Test 006 wird herausgefiltert. | Wie Erwartet. | i. O. | ||
Anmerkung | Einheit | 130 | Die Einheit wurde nicht überprüft, da in er späteren Reglung der Sensor zweifach verwendet wird. Simit sind evetuelle Abweichungen irrelevant. | |||||
008 | Testen verschiedener Sensorscheiben | 020-030 | Es werden verschieden Sensorscheiben nacheinander getestet. Bei maximaler Drehzahl wird überpfrüft, ob die Bedingung aus Test 002 erfüllt ist. | Eine Scheibe wird ermittelt. | Die Scheiben mit bis zu 3 Unterbrechungen können verwendet werden. | i. O. |
HMI
Testfall-ID | Testfall-Name | Anforderungs-ID | Vorbedingungen und Eingänge | Aktionen | Erwartetes Ergebnis | Ergebnis | Bewertung | Kommentar |
---|---|---|---|---|---|---|---|---|
001 | Schalter | 010 | Schalter muss aus sein | Schalter umlegen | Ausgabewert wechselt von 0 auf 1. | Bei testen drehen die Reifen weniger | i. O. | |
002 | LED-Anzeige | 020 | Anschließen an den Arduino. | LED über Simulink einschalten | LED-Leuchtet | LED leuchtet | i. O. | |
003 | WLAN-Verbindung | 030 | ESP8266 muss auf die Platine gesteckt werden. Ipad von Lukas muss ein Hotspot aufmachen | Betrachten | iPad zeigt an, dass eine Verbindung hergestellt wurde | iPad zeigt an, dass eine Verbindung hergestellt wurde | i. O. | |
004 | Einlesen von einem vordefinierten String | 040 | ESP 8266 muss ans Fahrzeug angeschlossen und mit dem iPad über WLAN verbunden sein. Im Browser die Seite 170.20.10.3 eingeben. Das Fahrzeug muss Daten schicken schicken. | Betrachten der HMTL-Seite | HTML Seite gibt Werte wieder | HTML-Seite gibt Werte wieder. | i. O. | |
005 | HTML Seite im Browser | 050 | ESP 8266 muss ans Fahrzeug angeschlossen und mit dem iPad über WLAN verbunden sein. Im Browser die Seite 170.20.10.3 eingeben. | Betrachten | HTML-Seite wird angezeigt | HTML-Seite mit 3 Plots und einer Tabelle wird angezeigt | i. O. | |
006 | Darstellung | 060 | ESP 8266 muss ans Fahrzeug angeschlossen und mit dem iPad über WLAN verbunden sein. Im Browser die Seite 170.20.10.3 eingeben. | Betrachten | HTML-Seite mit 3 Plots und einer Tabelle wird angezeigt | HTML-Seite mit 3 Plots und einer Tabelle wird angezeigt | i. O. |
Hinzufügen des Reglers
Hinzufügen der Motoransteuerung
Systemtest
Lessons Learned
Zusammenfassung
Literaturverzeichnis
→ zurück zur Übersicht: WS2022: Angewandte Elektrotechnik (BSE)