ArduMower: Kartierung in Matlab/Simulink: Unterschied zwischen den Versionen
Zeile 14: | Zeile 14: | ||
im Pflichtenheft taucht daraufhin der Punkt '''Selbstlernende Karte''' auf, wird jedoch nicht näher spezifiziert:<br> | im Pflichtenheft taucht daraufhin der Punkt '''Selbstlernende Karte''' auf, wird jedoch nicht näher spezifiziert:<br> | ||
[[Datei:ID0170 ArduMower Pflichtenheft.jpg| | [[Datei:ID0170 ArduMower Pflichtenheft.jpg|1200px]] | ||
Folgende Anforderungen wurden an die Karte gestellt: | Folgende Anforderungen wurden an die Karte gestellt: |
Version vom 21. Januar 2018, 13:26 Uhr
Autor: Prof. Dr.-Ing. Schneider
Einleitung
Dieser Artikel beschreibt den Aufbau einer Matrix-basierten Karte zur Darstellung des aktuellen Mähstandes eines Rasenmähroboters. Der Anstoß zur Entwicklung dieser Karte lieferte das Projekt "ArduMower", in dem der Kollege Prof. Göbel und der Autor dieses Artikels mit Studierenden gemeinsam einen autonomen Rasenmäher entwickeln, siehe Projekt_ArduMower.
Das systematische Vorgehen bei der Entwicklung des Modells orientiert sich am V-Prozessmodell.
Anforderungen
Im Lastenheft des Projektes ArduMower wird die Erstellung einer selbstlernenden Karte gefordert:
im Pflichtenheft taucht daraufhin der Punkt Selbstlernende Karte auf, wird jedoch nicht näher spezifiziert:
Folgende Anforderungen wurden an die Karte gestellt:
ID | Inhalt | Ersteller | Datum | Geprüft von | Datum |
---|---|---|---|---|---|
1 | Das Fahrzeugmodell muss die Kinematik des als starr angenommenen Fahrzeugkörpers beschreiben. | Prof. Göbel | 07.06.2017 | Prof. Schneider | 08.06.2017 |
2 | Das Fahrverhalten muss unter der Annahme korrekt abgebildet werden, dass die Räder schlupffrei abrollen. | Prof. Göbel | 07.06.2017 | Prof. Schneider | 08.06.2017 |
3 | Am Eingang werden die Längsgeschwindigkeiten entlang der x-Achse des Fahrzeugkoordinatensystems K der Räder rechts (R) und links (L) vorgegeben. | Prof. Göbel | 07.06.2017 | Prof. Schneider | 08.06.2017 |
4 | Am Ausgang müssen
zur Verfügung stehen. |
Prof. Göbel | 07.06.2017 | Prof. Schneider | 08.06.2017 |
5 | Das Modell muss in Matlab/Simulink erstellt werden. | Prof. Göbel | 07.06.2017 | Prof. Schneider | 08.06.2017 |
6 | Die Rechnung des Modells erfolgt mit diskreten Zeitschritten (es sind diskrete Integratoren zu verwenden). | Prof. Göbel | 07.06.2017 | Prof. Schneider | 08.06.2017 |
7 | Die Dokumentation muss auf Basis der Mehrkörpersystemeberechnung leicht nachvollziehbar erfolgen. | Prof. Göbel | 07.06.2017 | Prof. Schneider | 08.06.2017 |
8 | Bei der Simulation muss eine graphische Ausgabe der Position und Richtung des Fahrzeugs in x- und y-Koordinaten des I-Systems erfolgen. | Prof. Göbel | 07.06.2017 | Prof. Schneider | 08.06.2017 |
9 | Die Signalnamen müssen gemäß nebenstehender Abbildung gewählt werden. | Prof. Göbel | 07.06.2017 | Prof. Schneider | 08.06.2017 |
Funktionaler Systementwurf / Technischer Systementwurf
Bei der Größe des zu erstellenden Modells werden die Schritte Funktionaler Systementwurf / Technischer Systementwurf des V-Modells zusammen gelegt und bereits Schnittstellen zwischen den einzelnen Blöcken definiert.
Das Fahrzeugmodell wird unterteilt in
- ein Block "Gieren und Geschwindigkeit in Achsmitte", in dem die Position und Geschwindikeit der Punkte M und D in Fahrzeugkoordinaten K bestimmt werden.
- und zwei Blöcke "Transformation und Integration Punkt M/D", in denen Position und Geschwindikeit der Punkte M und D in Inertialkoordinaten I bestimmt werden.
Komponentenspezifikation
Das Modell wird insgesamt als Komponente aufgefasst, d. h. die einzelnen Blöcke aus dem Systementwurf werden als Bestandteil der Komponente "Fahrzeugmodell" definiert. An dieser Stelle wäre es selbstverständlich möglich, die Komponente weiter aufzuteilen (damit würde die Komponente in Teilsystem umbenannt) und auch beim Testen diese einzelnen Komponenten dann zu berücksichtigen.
xxx hier fehlt noch eine Komponentenspezfikation, die genau darlegt, wie die Berechnung vonstatten gehen soll! xxx
Programmierung
Bei der Bestimmung der Geschwindikeit in M wird mit dem Satz "räumliche Bewegung" die bekannte Geschwindigkeit in R, der Relativdrehvektor der Koordinatensysteme K gegenüber I sowie der Ortsvektor zwischen R und M verwendet (siehe [1]):
Im körperfesten Koordinatensystem K beschrieben folgt eine Beschreibung, in der jeder Term selbst 3 Komponenten (x, y, z) enthält und mit denen jetzt im jeweiligen Koordinatensystem gerechnet werden kann (das ging bei der vektoriellen Schreibweise oben noch nicht!).
Mit den eingetragenen Komponenten sieht die Gleichung wie folgt aus:
Zur Bestimmung der Gierrate wird obiger Ansatz erneut verwendet, um von der bekannten Geschwindigkeit in R auf die ebenfalls bekannte Geschwindikeit in L "zu schließen", sodass der Relativdrehvektor der Koordinatensysteme K gegenüber I in K-Koordinaten bestimmt werden kann (jetzt mit Komponenten besser Spaltenmatrix genannt: ). Es folgt:
.
Mit eingesetzten Komponenten ergibt sich im körperfesten System K:
.
Aus Zeile 1 der obigen Gleichung kann die Gierrate (selbstverständlich im körperfesten System K) mit nachstehendem Zusammenhang ermittelt werden.
Umgestellt folgt daraus:
Um die Position des Punktes M in Inertialkoordinaten zu berechnet, wird seine Geschwindigkeit in Intertialkoordinaten I benötigt, da diese dann durch eine einfache Integration in die Position überführt werden kann. Im körperfesten System ist dies nicht erlaubt bzw. möglich, da dieses sich dreht! Mit Hilfe einer Transformationsmatrix kann diese Umrechnung in einem Schritt erfolgen.
Der über den Ortsvektor von R nach D beliebig wählbare Punkt D kann genauso wie oben der Mittelpunkt M behandelt werden. Die Gleichungen in Kurzform dazu sind wie folgt.
Im körperfesten Koordinatensystem K beschrieben folgt eine Beschreibung, in der jeder Term selbst 3 Komponenten (x, y, z) enthält und mit denen jetzt im jeweiligen Koordinatensystem gerechnet werden kann (das ging bei der vektoriellen Schreibweise oben noch nicht!).
Das Ergebnis für D lautet:
.
Komponententest
Da es sich bei dieser Entwicklung um die einer einzelnen Komponente handelt, schließt der Komponententest mit dem Testbericht die Entwicklung ab.
ID | Testfallbeschreibung | Eingang | Eingang | Erwartetes Ergebnis | Testergebnis | Testperson | Datum |
---|---|---|---|---|---|---|---|
1 | Das Fahrzeugmodell steht. | 0 | 0 | Alle Ausgänge sind Null. | OK | Prof. Göbel | 10.06.2017 |
2 | Das Fahrzeugmodell fährt eine Rechtskurve. | 1 | 0 | Rechtskurve: Negative Gierrate, negativer Gierwinkel. | OK | Prof. Göbel | 10.06.2017 |
3 | Das Fahrzeugmodell fährt eine Linkskurve. | 0 | 1 | Linkskurve: Positive Gierrate, positiver Gierwinkel. | OK | Prof. Göbel | 10.06.2017 |
4 | Das Fahrzeugmodell fährt geradeaus. | 1 | 1 | Keine Gierrate und Gierwinkel, . | OK | Prof. Göbel | 10.06.2017 |
Als Abschluss zeigt die letzte Abbildung dieses Artikels eine Ergebnisdarstellung der Fahrzeugbewegung in I-Koordinaten (Draufsicht).
Zusammenfassung
Das Modell ist fertig und funktioniert wie gewünscht! Somit ist die Entwicklung von Algorithmen möglich, ohne ein Fahrzeug in Hardware zur Verfügung zu haben. Dadurch eröffnen sich ernorme Möglichkeiten wie z. B. simultanes Entwickeln, automatisiertes Testen, simulative Auslegung von Reglern u. s. w.!
Literaturverzeichnis
- ↑ M. Göbel: Formelsammlung Mehrkörpersysteme und Robotik, HSHL, Version 29.06.2017
→ zurück zum Hauptartikel: Projekt ArduMower