|
|
(231 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt) |
Zeile 4: |
Zeile 4: |
| '''Betreuer:''' [[Benutzer:Ulrich_Schneider| Prof. Schneider]]<br/> | | '''Betreuer:''' [[Benutzer:Ulrich_Schneider| Prof. Schneider]]<br/> |
| '''Art:''' Praxissemester<br> | | '''Art:''' Praxissemester<br> |
| '''Projektlaufzeit:''' 02.11.2021-20.02.2022 | | '''Projektlaufzeit:''' 02.11.2021 - 20.02.2022 |
|
| |
|
|
| |
|
Zeile 12: |
Zeile 12: |
| == Einleitung == | | == Einleitung == |
|
| |
|
| Dieser Artikel beschreibt die Kommunikation von einem [https://de.wikipedia.org/wiki/Raspberry_Pi Raspberry Pi] mit dem [[Robot_Operating_System_2|Robot Operating System2 (ROS2)]]. Dazu wird erklärt, wie ein Raspberry Pi mit einem PC über SSH(Secure Shell) verbunden werden kann und wie der AlphaBot über den Raspberry Pi und ROS2 gesteuert wurde. Außerdem wird beschrieben was es für grafische Anzeige Möglichkeiten unter ROS2 gibt. | | Dieser Artikel beschreibt die Kommunikation von einem [https://de.wikipedia.org/wiki/Raspberry_Pi Raspberry Pi(RPi)] mit dem [[Robot_Operating_System_2|Robot Operating System2 (ROS2)]]. In Abb. 1 sind die Nodes master und slave zu sehen, welche auf der RPi ausgeführt werden. Über die Topics, wie cmd_vel oder die SONAR-Topics, kommunizieren die Nodes mit einander. Dazu wird erklärt, wie ein Raspberry Pi mit einem PC über [https://de.wikipedia.org/wiki/Secure_Shell Secure Shell (SSH)] verbunden werden kann und wie der AlphaBot über den RPi und ROS2 gesteuert wurde. Außerdem wird beschrieben was es für grafische Anzeige Möglichkeiten unter ROS2 gibt. |
|
| |
|
| == Übersicht == | | ==== Aufgabenstellung ==== |
| === Dokumentation === | | |
| | Das Ziel war es einen [[AlphaBot|AlphaBot]] mit ROS2 zu programmieren und fahren zu lassen, damit er Hindernisse mit Infrarotsensoren und dem Ultraschallsensor umfahren kann. |
| | |
| | ==== Projektplanung ==== |
| | |
| | [[Datei:Projektplan_JonasGerken.png|left|mini|700px|Abb 2: Projektplan]] |
|
| |
|
| Zum beginn dieses Artikels werden die verschiedenen Anforderungen an das Projekt aufgezeigt(Tabelle 1).
| | <br clear=all> |
|
| |
|
| ==== Funktionale Anforderungen ==== | | ==== Funktionale Anforderungen ==== |
Zeile 23: |
Zeile 28: |
| {| class="wikitable" | | {| class="wikitable" |
| |F1 | | |F1 |
| |Der Roboter muss Hindernisse mit Infrarotsensoren erkennen können. | | |Der AlphaBot muss Hindernisse mit Infrarotsensoren erkennen können. |
| |- | | |- |
| |F2 | | |F2 |
| |Der Roboter muss Hindernisse mit einem Ultraschallsensor erkennen können. | | |Der AlphaBot muss Hindernisse mit einem Ultraschallsensor erkennen können. |
| |- | | |- |
| |F5 | | |F5 |
Zeile 32: |
Zeile 37: |
| |- | | |- |
| |F3 | | |F3 |
| |Der Roboter muss Hindernisse umfahren können. | | |Der AlphaBot muss Hindernisse umfahren können. |
| |- | | |- |
| |F4 | | |F4 |
Zeile 41: |
Zeile 46: |
| {| class="wikitable" | | {| class="wikitable" |
| |NF1 | | |NF1 |
| |Es muss ein Alphabot verwendet werden. | | |Es muss ein AlphaBot verwendet werden. |
| |- | | |- |
| |NF2 | | |NF2 |
| |Der Roboter soll mit [[Robot Operating System 2| ROS2]] programmiert werden. | | |Der AlphaBot muss mit ROS2 programmiert werden. |
| |- | | |- |
| |NF3 | | |NF3 |
| |Der Roboter soll mit einem [[Raspberry Pi| Raspberry Pi]] gesteuert werden. | | |Der AlphaBot soll mit einem RPi gesteuert werden. |
| |- | | |- |
| |NF4 | | |NF4 |
| |Der Roboter soll mit Python programmiert werden. | | |Der AlphaBot soll mit Python programmiert werden. |
| |- | | |- |
| |NF5 | | |NF5 |
| |Es soll die Python Bibliothek [[RPi.GPIO python Bibliothek| RPi.GPIO]] verwendet werden. | | |Es soll die Python Bibliothek [https://pypi.org/project/RPi.GPIO/ RPi.GPIO] verwendet werden. |
| |- | | |- |
| |NF6 | | |NF6 |
| |Es muss [[Raspberry Pi| Ubuntu Server 20.04 Server]] auf dem RPi verwendent werden. | | |Es muss [[Raspberry Pi| Ubuntu Server 20.04 Server]] auf dem RPi verwendent werden. |
| |-
| |
| |NF7
| |
| |Es kann [https://de.wikipedia.org/wiki/Secure_Shell Secure Shell(SSH)] zur Nutzung des Raspberry Pi's verwendet werden.
| |
| |-
| |
| |NF8
| |
| |Für eine SSH-Verbindung kann [https://de.wikipedia.org/wiki/PuTTY PuTTY] verwendet werden.
| |
| |} | | |} |
|
| |
|
| ===== Hardware ===== | | == Übersicht == |
| | === Dokumentation === |
|
| |
|
| # [[AlphaBot|AlphaBot]]
| |
| # [[Raspberry Pi|Raspberry Pi]]
| |
|
| |
|
| ===== Software =====
| |
|
| |
|
| # [[Raspberry Pi| Ubuntu Server 20.04]]
| |
| # ROS2
| |
| # [[Using the Raspberry Pi’s GPIO to control hardware components| RPi.GPIO python Bibliothek]]
| |
| # [https://de.wikipedia.org/wiki/PuTTY PuTTY]
| |
|
| |
|
| ==== Raspberry Pi über Secure Shell(SSH) mit Desktop PC verbinden ==== | | ===== verwendete Hardware ===== |
|
| |
|
| In dem hier beschriebenen Projekt wurde [https://de.wikipedia.org/wiki/Secure_Shell Secure Shell(SSH)] zur Verwendung des RPi's verwendet.
| | # AlphaBot |
| Dies ermöglicht die Nutzung des RPi's und Ubuntu Desktop auf einem Bildschirm gleichzeitig.
| | # Raspberry Pi 4 |
| So wird keine HDMI-Verbindung zwischen dem RPi und einem Bildschirm mehr benötigt.
| | # mciro-SD Karte mit SD-Karten Adapter |
| | # HDMI-Kabel |
| | # Netzwerkkabel |
| | # Netzwerkswitch |
|
| |
|
| Über SSH kann der AlphaBot später mittels einer WIFI-Verbindung autonom fahren.
| | ===== verwendete Software ===== |
|
| |
|
| Die SSH Verbindung kann über verschiedene Wege erfolgen. Zum einen über das Programm [https://de.wikipedia.org/wiki/PuTTY PuTTY] oder über das Ubuntu Desktop Terminal.
| | # Ubuntu Server 20.04 |
| | | # Python |
| Im weiteren wird beschrieben, wie SSH auf dem RPi aktiviert wird und wie es mit PuTTY oder in einem Terminal verwendet werden kann.
| | # ROS2 |
| | | # Secure Shell (SSH) |
| ===== SSH auf dem Raspberry Pi Aktivieren =====
| | # [https://de.wikipedia.org/wiki/PuTTY PuTTY] |
| | |
| [[Datei:SSH Datei erstellen.png|right|mini|500px|Abb 1: Ordner des Boot-Verzeichnisses <nowiki></nowiki>]]
| |
| | |
| Damit SSH genutzt werden kann muss es auf dem Raspberry Pi zuerst aktiviert werden.
| |
| Dazu sind folgende Schritte wie in Abb. 1 gezeigt zu befolgen:
| |
| | |
| | |
| # SD-Karte mit einem SD-Karten-Adapter in ein Kartenleseslot an einem PC stecken
| |
| # im boot-Verzeichnis (hier: "system-boot") eine leere Textdatei mit dem Namen "ssh.txt" erstellen
| |
| ## hier die rechte Maustaste drücken
| |
| ## Neu und dort auf Textdokument
| |
| # im Windows-Explorer unter dem Reiter Ansicht Haken bei Dateinamenserweiterung setzen
| |
| # die nun angezeigte .txt Dateiendung entfernen (Abb.2)
| |
| # die darauf folgende Warnung mit JA bestätigen
| |
| # beim Booten des Raspberry Pi's wird nun SSH aktiviert
| |
| | |
| | |
| <br clear=all>
| |
| | |
| ===== IP-Adresse des RPi herausfinden =====
| |
| Damit der Raspberry Pi über SSH verbunden werden kann, wird die IPv4-Adresse des Raspberry Pi's benötigt.
| |
| Dafür wird der RPi mit einem HDMI-Kabel an einem Bildschirm und an das dazugehörige Stromkabel angeschlossen.
| |
| Dann bootet der RPi und der login Bildschirm wird angezeigt, wo nach dem Benutzernamen (ubuntu) und nach dem Passwort (Hshl2021) gefragt wird (Abb. 2).
| |
|
| |
|
| [[Datei:Log In Bildschirm.jpg|left|mini|250px|Abb 2: Beispiel <nowiki><log in Bildschirm</nowiki>]] | | ==== [[ Raspberry Pi über Secure Shell(SSH) mit Desktop PC verbinden | Raspberry Pi über Secure Shell(SSH) mit Desktop PC verbinden]] ==== |
| <br clear=all>
| |
|
| |
|
| Nach der Anmeldung auf dem Raspberry Pi, kann die IPv4-Adresse auf dem Start Bildschirm abgelesen werden, wie in Abb. 3 gezeigt.
| | ==== [[ Programmierung / Funktionsweise der ROS2 Codes | Programmierung / Funktionsweise der ROS2 Codes ]] ==== |
|
| |
|
| [[Datei:StartBild_Ubuntu_Server.png|left|mini|300px|Abb 3: Beispiel <nowiki>IP-Adresse</nowiki>]]
| | ==== [[ Darstellung der Ergebnisse | Darstellung der Ergebnisse ]] ==== |
| <br clear=all>
| |
| | |
| Für die Verbindung über Ethernet muss nur der RPi und der PC mit einem Lan-Kabel verbunden werden. Damit beides im gleichen Netzwerk ist wird ein Netzwerk-Switch zwischengeschaltet.
| |
| Jetzt kann die SSH-Verbindung mit dem Befehl "ssh username@IP-Adresse" hergestellt werden.
| |
| Danach wird nach dem RPi Passwort gefragt.
| |
| Nach der Eingabe des Passworts wird die SSH Verbindung hergestellt.
| |
| | |
| Um ein Wifi-Netzwerk zu nutzen muss die RPI Netzwerk config geändert werden. Wie das gemacht werden kann kann in dem Artikel
| |
| | |
| Dabei ist darauf zu achten, das die IP-Addressen für Wifi und Ethernet unterschiedlich sind.
| |
| | |
| ===== PuTTY für die SSH Verbindung ===== | |
| PuTTY ist eine freie Software zur Herstellung von Secure Shell Verbindungen.
| |
| Auf einem Pc mit Ubuntu wird Putty über die Kommandozeile installiert [https://wiki.ubuntuusers.de/PuTTY/].
| |
| sudo apt-get install putty
| |
| | |
| Nach der Installaltion kann es über den Befehl "putty" in einem Terminal ausgeführt werden und ein neues Fenster öffnet sich(Abb.5).
| |
| Unter Session wird bei Host-Name bzw. IP-Addresse die IP-Addresse des Raspberry Pi's angegeben. Und im Bereich Connection type wird der Type "SSH" ausgewählt und überprüft, ob bei "Port" die Zahl 22 steht.
| |
| | |
|
| |
| [[Datei:PuTTY Konfiguration.png|left|350px|Abb. 5: Beispiel <nowiki>PuTTY Start Bildschirm]] | |
| <br clear=all>
| |
| | |
| Um den SSH Server zu starten wird unten im Fenster auf Open geklickt.
| |
| Dann öffnet sich ein neues Fenster, wo sich mit den zuvor gezeigten Anmeldedaten auf dem RPi angemeldet werden kann.
| |
| | |
| [[Datei:Putty_Login.png|left|mini|350px|Abb. 6: PuTTY Login Bildschirm]]
| |
| <br clear=all>
| |
| | |
| Nun ist die SSH-Verbindung über PuTTY hergestellt.
| |
| | |
| Um eine SSH-Verbindung über das Ubuntu Terminal herzustellen ist der folgende Befehl nötig [https://wiki.ubuntuusers.de/SSH/]:
| |
| | |
| ssh username@IP-Adresse
| |
| | |
| Für den verwendeten RPi war der username "ubuntu" und die IP-Adresse für Ethernet war "172.31.14.89" und für Wifi war es "192.168.10.102".
| |
| | |
| ==== Microcontroller coding mit der Integration von Ros 2 ====
| |
| | |
| In diesem Abschnitt wird die Programmierung des Raspberry Pi's mit ROS2 beschrieben. Dazu gehört die Motorsteuerung, genau sowie die Infrarot Sensoren und/oder dem Ultraschallsensor um Hindernisse umfahren zu können.
| |
| | |
| Da es die Bibliothek wiringPi, welche für die Ansteuerung der GPIO Pins über CPP nicht mehr unterstützt wird, haben wir uns für die Python Bibliothek "RPi.GPIO" entschieden. Für mehr Informationen siehe hier: [[Raspberry Pi|Raspberry Pi]]
| |
| | |
| Um mit der Programmierung zu beginnen wurde ein Ros2 Workspace (ros_ws) mit einem source Ordner (src) erstellt.
| |
| | |
| mkdir ros_ws
| |
| cd ros_ws
| |
| mkdir src
| |
| | |
| | |
| In diesem Ordner wurde dann das ros2 Package mit den benötigten Bibliotheksabhängigkeiten erstellt.
| |
| <br>
| |
| <code> ros2 pkg create --build-type ament_python packagename(z.B. sensor_test) --dependencies rclpy std_msgs </code>
| |
| | |
| | |
| ===== Motorsteuerung =====
| |
| | |
| Es wurde mit der Programmierung der Motoren begonnen. Dazu wurde eine ROS2 Node namens slave.py erstellt, welche alle Funktionen zur Ansteuerung der RPi.GPIO Pins beinhaltet.
| |
| | |
| | |
| Um das Programm zu starten, muss das Package zuerst mit <code> colcon build </code> kommpeliert und mit <code> . install/setup.bash </code> installiert werden.
| |
| Für dieses Motortestprogramm wurde die Node motor_subcriber genannt.
| |
| Diese kann in einem Terminal unter Ubuntu auf dem RPi mit dem Befehl <code>"ros2 run sensor_test slave.py"</code> gestartet werden.
| |
| | |
| Falls die
| |
| # ls -l /dev/ gpiomem
| |
| crw-rw---- 1 root dialout 239, 0 Apr 1 17:23 /dev/gpiomem
| |
| # groups
| |
| ubuntu adm dialout cdrom floppy sudo audio dip video plugdev netdev lxd
| |
| | |
| <code> sudo chown root.gpio /dev/gpiomem </code>
| |
| | |
| <code> sudo chmod g+rw /dev/gpiomem </code>
| |
| | |
| | |
| | |
| Nachdem die motor_subscriber-Node gestartet wurde, wartet sie auf eingehende Nachrichten. Die Motoren wurden zuerst manuell mit dem Befehl <code>ros2 topic pub</code> gesteuert.
| |
| | |
| | |
| | |
| <code> ros2 topic pub /cmd_vel std_msgs/msg/String '{data: forward}'</code>
| |
| | |
| So sendet eine Person eine Nachricht an die motor_subscriber Node.
| |
| Hier werden die eingehenden Nachrichten ausgewertet und über eine If else Funktion entscheidet das Programm danach welche GPIO.Pins angesteuert werden müssen.
| |
| | |
| | |
| In diesem Fall wird der motor_subscriber-Node die Nachricht forward gesendet und und der AlphaBot fährt vorwärts.
| |
| | |
| | |
| | |
| So fährt der Roboter vorwärts und die Nachricht wird in einer Dauerschleife immer wieder an die Node gesendet bis diese Schleife mit der Tastenkombination <code> STRG C</code> beendet wird. Dann kann über den oben genannten Befehl eine neue Nachricht (z.B. right an stelle von forward) an die Node gesendet werden.
| |
| | |
| In Abb. 8 ist zusehen wie die selbst versendete Nachricht versendet wird und die slave die Nachricht empfängt.
| |
| | |
| [[Datei:Terminal_Motor_Controll.png|left|mini|800px|Abb. 8: Terminal Ausgabe]]
| |
| | |
| <br clear=all>
| |
| | |
| ===== Infrarot Hindernisumfahrung =====
| |
| | |
| [[Datei:Infrared.png|right|mini|500px|Abb. 9 Infrarot Hindernisumfahrung]]
| |
| | |
| Nachdem die Motoren mit ROS2 implementiert und getestet wurden, wurde die Hindernisumfahrung mit Infrarotsensoren implementiert.
| |
| Hierfür wurden zwei neue Dateien mit den Namen "master_IR.py" und "slave_IR.py" in dem source Ordner des ROS2 Packages erstellt.
| |
| | |
| | |
| | |
| Über die master_IR.py wurde die Master-Node implementiert. Diese bekommt Sensordaten von der Slave-Node und entscheidet anhand der Sensordaten was die Slave machen soll.
| |
| Die slave_IR.py ist wie bei der Motorsteuerung oben, nur das sie nicht nur die Motoren anhand von Nachrichten ansteuert, sondern auch die Sensordaten ausließt und an die Master-Node sendet.
| |
| | |
| | |
| Zudem wurde eine launch file erstellt, um den master und die slave mit einem Befehl starten zu können.
| |
| Der code für die Launch-file ist in der svn-Repository zu finden.
| |
| | |
| <code> ros2 launch sensor_test alphabot_IR_launch.py </code>
| |
| | |
| In Abb 10 ist dazu ein Beispiel, wie der master und die slave miteinander kommunizieren.
| |
| | |
| | |
| | |
| So fährt der Roboter vorwärts wenn für beide Sensoren eine "1" ausgelesen wird.
| |
| Wenn z.B. der rechte Sensor eine "0" und der linke eine "1" angibt, dann ist rechts ein Hindernis und der master sendet der Slave die Nachricht "left", sodass der AlphaBot nach links fährt. In der Abb. 10 ist dieser Ablauf noch einmal Graphisch dargestellt.
| |
| | |
| | |
| | |
| | |
| | |
| [[Datei:IR_Left.jpg|left|mini|500px|Abb. 10 Hindernisumfahrung Beispiel]]
| |
| | |
| <br clear=all>
| |
| | |
| In ROS2 können die Programmierten Nodes und Topics in einem RQT-Graph grafisch Dargestellt werden wie schon in den ROS2 Tutorials gezeigt.
| |
| Für die Infrarot Hindernisumfahrung könnte der Graph dann wie in Abb. 11 gezeigt aussehen.
| |
| | |
| Dort ist zusehen das der master zu den beiden Topics "IR_right und IR_left" subscript und über die Topic "cmd_vel" published. Auf der anderen Seite, die Slave, published über die Topics "IR_right und IR_left" und subscript zur Topic "cmd_vel".
| |
| | |
| [[Datei:RQT_Graph_Infrared.jpeg|left|mini|600px|Abb. 11 Infrarot Hindernisumfahrung]]
| |
| | |
| <br clear=all>
| |
| | |
| | |
| [[Datei:RQT_Plot_Infrared.png|left|mini|700px|Abb. 12 Infrarot Hindernisumfahrung]]
| |
| | |
| <br clear=all>
| |
| | |
| ===== Ultraschall Hindernisumfahrung =====
| |
| | |
| [[Datei:Ultraschall_Diagram.jpg|right|mini|350px|Abb. 7 Ultraschall Hindernisumfahrung]]
| |
| | |
| | |
| <br clear=all>
| |
| | |
| [[Datei:Ultraschall_Example.jpg|left|mini|500px|Abb. 7 Ultraschall Hindernisumfahrung]]
| |
| <br clear=all>
| |
| | |
| [[Datei:Ultraschall_RQT_Graph.jpg|left|mini|500px|Abb. 7 Ultraschall Hindernisumfahrung]]
| |
| <br clear=all>
| |
| | |
| === Demo ===
| |
| | |
| Checkout URL : https://svn.hshl.de/svn/Robotik_und_Autonome-Systeme/trunk/Projekte/AlphaBot_PI_ROS2/
| |
| | |
| Der Code kann direkt aus dem SVN-Verzeichnis ausgeführt werden.
| |
| | |
| {| class="wikitable"
| |
| |-
| |
| ! # !! Name
| |
| |-
| |
| | 1 || Motortest
| |
| |-
| |
| | 2 || Infrared_Obstacle_Avoidance
| |
| |-
| |
| | 3 || Ultrasonic_Obstacle_Avoidance
| |
| |}
| |
|
| |
|
| === Software === | | ==== [[ Demo | Demo]] ==== |
|
| |
|
| == [[Zusammenfassung_Praxissemester_Gerken|Zusammenfassung]] == | | == [[Zusammenfassung_Praxissemester_Gerken|Zusammenfassung]] == |
Zeile 303: |
Zeile 101: |
|
| |
|
| * [https://wiki.ubuntuusers.de/PuTTY/ PuTTY Installation] | | * [https://wiki.ubuntuusers.de/PuTTY/ PuTTY Installation] |
| | * [https://wiki.ubuntuusers.de/SSH/ SSH ] |
|
| |
|
|
| |
|
| ---- | | ---- |
| → zurück zum Hauptartikel: [[Robot_Operating_System_2|Robot Operating System2 (ROS2)]] | | → zurück zum Hauptartikel: [[Robot_Operating_System_2|Robot Operating System2 (ROS2)]] |