Energiehaushalt eines Hauses: Energiespeicher ESP
Autoren: Asmaa Kachout-Aarourou; Lihui Liu
Betreuer: Prof. Dr.-Ing. M. Göbel
→ zum Hauptartikel: Systems Design Engineering - Seminaraufgabe SoSe 2023: Energiehaushalt eines Hauses
Einleitung
Im Sommersemester 2023 im Rahmen der Lehrveranstaltung Systems Design Engineering im Masterstudiengang Business and Systems Engineering soll ein Modell für den Energiehaushalt eines Hauses entwickelt werden. Das Gesamtsystem wird in sechs Module unterteilt:
- Lastkollektiv
- Energieerzeugung
- Energiespeicherung
- Heizungsregelung
- Heiz- und Klimatechnik
- Isolationseigenschaften des Hauses
Die Gruppe Kachout/Liu bearbeiten mit dem Modul Energiespeicher (kurz: ESP).
Zielsetzung der Seminaraufgabe
Das Ziel dieser Seminaraufgabe besteht darin, dass die Studierenden mithilfe der Vorgehensweise des V-Modells die Simulation eines Hauses mit Solaranlage in MATLAB/Simulink durchführen. Die sechs aufgeteilten Systeme sollen miteinander kommunizieren können. Dadurch haben die Studierenden die Möglichkeit, ihre Kenntnisse im Bereich des Energiehaushalts eines Hauses sowie der Software MATLAB/Simulink zu vertiefen.
V-Modell
Das V-Modell wird in der Softwareentwicklung häufig angewendet. Die Schritte auf der linken Seite des V-Modells umfassen die Spezifikations- und Designphase, während sich die Schritte auf der rechten Seite auf die Umsetzung und Testphase konzentrieren. Diese Phasen sind aufeinander aufbauend und führen zur Entstehung eines vollständigen Systems.
Die Durchführung der Seminaraufgabe basierend auf dem V-Modell ist in Abbildung 2 wie folgt aufgeteilt:
- Anforderungsdefinition
- Funktionaler Systementwurf
- Technischer Systementwurf
- Komponentenspezifikation
- Programmierung/Modellierung
- Komponententest
- Integrationstest
- Systemtest
Anforderungsdefinition: Lastenheft
Zum Projektbeginn wurden die Anforderungen im Lastenheft in Form einer detaillierten Excel-Tabelle festgelegt. Das Lastenheft beinhaltet sowohl Informationen als auch konkrete Anforderungen. Die Informationen sind in verschiedene Kapitel untergliedert, wie beispielsweise Stromspeicherung, Art des Batteriespeichers, Speicherregelung, Schnittstellen, Software/Werkzeuge, Dokumentation und Wasserkollektor. Jedes Kapitel enthält spezifische Anforderungen, die als direkte Vorgaben formuliert sind. Für eine visuelle Darstellung siehe Abbildung 3.
Funktionaler Systementwurf
Der funktionale Systementwurf war im Sommersemester 2023 kein Bestandteil der Gruppenaufgabe und wurde von Prof. Dr. Göbel bereitgestellt
Technischer Systementwurf
Der technische Systementwurf wurde zunächst anhand einer Skizze erstellt und anschließend in Matlab/Simulink implementiert. Dabei wurden verschiedene Aspekte und Elemente berücksichtigt, die für die Gestaltung und Entwicklung der beiden Systeme, nämlich des Energiespeichers und des Wassertemperaturspeichers, erforderlich sind. Im Rahmen des technischen Systementwurfs wurden die Gesamtstruktur des Systems sowie die Beziehungen zwischen den verschiedenen Modulen detailliert beschrieben.
Komponentenspezifikation
Nach dem technischen Systementwurf werden die einzelnen Komponenten detailliert spezifiziert. In den Spezifikationen wird ihre Funktionen beschrieben und wie die Komponenten umgesetzt werden sollen. Die Komponentenspezifikation werden nach der Erstellung mit der Durchführung des Projekts ständig angepasst. Folgende stellt die Komponenten und deren zu durchführenden Funktionen sowie für die Implementierung die benötigt Parameter dar.
Solarmanager
Eingänge
- EEZ_PVleistungAC [W]
- ESP_Bateriezustand
Ausgänge
- ESP_Strom (Batteriespeicher)[A]
- ESP_Stromnetz (Verkaufen)[W]
- ESP_Verbrauch [%]
Parameter
- PAR_SMWirkungsgrad [%]
ID | Kapitel | Inhalt | Ersteller | AusklappenDatum |
Akku
Eingänge
- EEZ_PVleistungAC[W]
- PAR_ESP_SollVerbrauch[W]
Ausgänge
- ESP_BatterieZustand
Parameter
- PAR_BTWirkungsgrad[%]
- PAR_ESP_Batteriekapazität[Ah]
- PAR_ESP_DoD[%]
- PAR_ESP_SoC[%]
ID | Kapitel | Inhalt | Ersteller | AusklappenDatum |
Warmwasserspeicher
Eingänge
- HZR_Heizleistung[W]
Ausgänge
- ESP_WarmwasserTemperatur[°C]
Parameter
- PAR_ESP_Wärmekap(Wärmekapazität von Wasser)[J/(g*K)]
- PAR_ESP_VolumenWarmwasser [m^3]
- PAR_ESP_Anfangstemperatur [°C]
- PAR_ESP_Wasserdichte[kg/m^3]
- PAR_ESP_WLF_EPS W/(mK)
- PAR_ESP_Heizfläche [m^2]
- PAR_ESP_ISO_Dicke [m]
ID | Kapitel | Inhalt | Ersteller | AusklappenDatum |
Programmierung / Modellierung
Bei der Programmierung werden die Komponenten gemäß den zuvor definierten Spezifikationen umgesetzt. Die Implementierung erfolgt im bereits erstellten Simulink-Modell, das für den technischen Systementwurf entwickelt wurde. Die verwendeten Parameter werden separat in einer Matlab-Datei zusammengefasst und beim Start des Modells aufgerufen, um die entsprechenden Konstanten im Workspace zu erstellen.
Warmwasserspeicher
Abbildung 5 stellt die Implementierung des Warmwasserspeichers in Simulink dar.
Für die Simulation des Warmwasserspeichers wurde das Modell FlexTherm Duo des Herstellers Flamco als Beispiel verwendet[3] verwenet.
Die Gruppe HZR stellt die Warmwasserheizleistung für den Warmwasserspeicher bereit, die als Eingang fungiert. Die Leistung P wird mithilfe eines Integrators zur integrierten zugeführten Wärme erfasst. Zur Berechnung der Temperaturdifferenz wird die folgende Formel verwendet:
steht für die spezifische Wärmekapizität. Die Wärmekapizität von Wasser ist .
Um die Einheiten konsistent zu halten, wurde die Wärmekapizität in Parameter.m als gegeben.
repräsentiert die Masse des zu erwärmenden Wassers. Die Masse können durch die Formel berechnet werden: .
ist die Wasserdichte und beträgt 1 kg/m3
.
Das Wasservolumen wird in Litern angegeben, aber für die Einheitsumwandlung wird es durch 1000 geteilt, um es in m³ umzurechnen.
Anschließend wird die anfängliche Temperatur (Annahme: 10 Grad) mit dieser Temperaturdifferenz addiert. Das Ergebnis wird als Ausgang ESP_Warmwassertemperatur ausgegeben und anderen Gruppen zur Verfügung gestellt.
Es gibt gewiss Wärmeverluste in einem Warmwasserspeicher. Die folgende Formel ist zur Berechnung der verlorene Wärme:
.
ist der Wärmefluss der Isolierung.
ist die Wärmeleitfähigkeit des Isoliermaterials. Laut dem Datenblatt von FlexTherm Duo wird Polystyrol als Isoliermaterial verwendet. In der FSDE[4] liegt die Wärmeleitfähigkeit von expandiertem Polystyrol zwischen 0,032 und 0,040 Watt pro Meter und Kelvin. Im Simulink wird die Parameter mit dem Name PAR_WLF_EPS = 0,032 angegeben.
ist die Fläche der Isolierung. Gemäß dem Datenblatt beträgt die Heizfläche 0,5 m2.
ist die Temperaturdifferenz zwischen dem Warmwasserspeicher und der Umgebung, die bereits berechnet wurde.
ist die Dicke der Isolierungsschicht. Im Datenblatt wird die Isolierungsdicke mit 0,08 m angegeben.
Nachdem die verlorene Wärme berechnet wurden, wird sie durch den Block Add mit "+-" mit der Warmwasserheizleistung der Gruppe HZR ausgeglichen.
Energiespeicher
Das Ziel des entwickelten Systems " Energiespeicher" ist die effiziente Nutzung der von der Photovoltaikanlage (EEZ-Gruppe) erzeugten Energie. Es erfüllt zwei Hauptfunktionen: die Versorgung des Hauses mit der erzeugten Energie und die Speicherung überschüssiger Energie in einer Batterie für die spätere Nutzung, insbesondere am Abend, wenn die Sonneneinstrahlung abnimmt. Darüber hinaus wurde das System simuliert, um Situationen zu berücksichtigen, in denen die PV-Anlage keinen Strom erzeugt.
In diesen Fällen ist das System auf das Netz angewiesen, um die erforderliche Energie zu liefern. Dadurch wird sichergestellt, dass der Energiebedarf des Hauses kontinuierlich gedeckt wird, auch wenn die PV-Anlage keinen Strom erzeugt. Sobald die PV-Anlage jedoch genügend Energie erzeugt und die Batterie voll aufgeladen ist, kann überschüssiger Strom in das Netz eingespeist werden. Um diese Funktionalitäten zu optimieren, wurde das System mithilfe von MATLAB Simulink simuliert. Die simulierten Ergebnisse in Abbildung 6 bieten einen Einblick in den Betrieb des Systems.
Solarmanager
Der Solarmanager oder Solarregler wurde so programmiert, dass er die drei unten genannten Szenarien berücksichtigt: Im ersten Szenario, wenn ausreichende Sonneneinstrahlung vorhanden ist, analysiert der Solarmanager die PV-Leistung und teilt den erzeugten Strom entsprechend auf. Ein Teil der Energie wird in die Batterie geleitet, um sie aufzuladen und für Zeiten ohne Sonneneinstrahlung vorzubereiten. Der andere Teil des erzeugten Stroms wird direkt dem Verbrauch zur Verfügung gestellt, um die elektrischen Geräte zu betreiben. Der Solarregler überwacht kontinuierlich die Sonneneinstrahlung, um sicherzustellen, dass die Batterie angemessen geladen wird und der Verbrauch abgedeckt ist.
Im zweiten Szenario, wenn keine Sonneneinstrahlung vorhanden ist und die Batterie leer ist, erkennt der Solarregler automatisch die Fehlende PV-Leistung. In dieser Situation schaltet der Solarregler nahtlos auf den Netzbezug um, um den benötigten Strom für den Verbrauch bereitzustellen. Durch diese Umschaltung wird ein unterbrechungsfreier Betrieb sichergestellt, obwohl keine Solarenergie verfügbar ist.
Im dritten Szenario, wenn die Batterie bereits vollständig aufgeladen ist und gleichzeitig Sonneneinstrahlung vorhanden ist, erfasst der Solarregler den Ladezustand der Batterie sowie die aktuelle PV-Leistung. Bei überschüssigem Strom aus der PV-Anlage wird dieser erkannt und gesteuert. Der Solarregler leitet den überschüssigen Strom in das Stromnetz, um anderen Verbrauchern zur Verfügung zu stehen.
Folgende stelle die Code für die Funktion "Solarmanager" dar.
function [NetzOut, NetzIn,BT_laden, verbrauch]= fcn(PV_P, P_Soll,BT_Zustand) a = P_Soll ; if PV_P == a % 1 Szenario: Sonniger Tag verbrauch = a; BT_laden = 0 ; NetzOut=0; NetzIn=0; elseif PV_P > 20160000 %1.Szenario: Ein sehr Sonniger Tag verbrauch = a ; rest = PV_P - 20160000 ; BT_laden = rest ; NetzOut=PV_P-rest; NetzIn=0; elseif PV_P == 0 & BT_Zustand >a %2. Szenario: keine Sonneneinstrahlung aber Batterie Voll verbrauch = a; BT_Zustand= BT_Zustand-a; NetzIn=0; NetzOut=0; BT_laden = 0 ; elseif PV_P == 0 & BT_Zustand < a %2.Szenario: keine Sonneneinstrahlungen und Batterie ist leer, dann Strom aus dem Netz bezogen NetzIn=a; verbrauch = NetzIn; NetzOut=0; BT_laden = 0 ; else PV_P > a & BT_Zustand == 0 %3.Szenario: Sonniger Tag und Batterie ist Voll , dann Strom ins Netz einspeisen verbrauch= a NetzOut= 0; BT_laden = PV_P-a NetzIn= 0 end
Batterie
Für das entwickelte System wurde ein Lithium-Eisenphosphat-Akku ausgewählt, da diese Art von Batterie bekannt für ihre hohe Leistungsfähigkeit und Zuverlässigkeit ist. Der Akku weist einen beeindruckenden Wirkungsgrad von 95,3% auf, was bedeutet, dass nur eine geringe Menge an Energieverlust beim Laden und Entladen auftritt.[5]
Zusätzlich wurden spezifische Batterieparameter festgelegt. Die Depth of Discharge (DoD) des Akkus beträgt 80%. Das bedeutet, dass der Akku bis zu 80% seiner Kapazität entladen werden kann, bevor er wieder aufgeladen werden muss. Diese Einstellung ermöglicht eine effektive Nutzung des Batteriespeichers.
Der State of Charge (SoC) des Akkus beträgt 20%. Dies bedeutet, dass immer ein Minimum von 20% der Akkukapazität beim Entladen in der Batterie verbleiben soll. Dieses Vorgehen zielt darauf ab, die Lebensdauer des Akkus zu maximieren und eine Tiefentladung zu vermeiden, die den Akku beschädigen könnte. [6]
Komponententest
Zur Validierung des implementierten Modells wurden Komponententests, Integrationstests, Systemtests und Abnahmetests gemäß dem V-Modell durchgeführt. Im V-Modell bildet der Komponententest die erste Stufe, bei der die Funktionsfähigkeit der einzelnen Komponenten innerhalb eines Moduls getestet wird. Die Tests wurden von einer anderen Gruppe durchgeführt, um sicherzustellen, dass möglicherweise übersehene Fehler von den Modulentwicklern erkannt werden. Die Gruppe Heizungsregelung HZR wurde für den Komponententest und den Integrationstest getestet. Um den Komponententest durchzuführen, wurden die Testfälle basierend die HZR geschriebene Komponentenspezifikation entwickelt. Dabei werden die Eingaben statt Signale hinzufügt und mit den Ausgaben bewertet, ob die erzielten Ergebnisse mit der Komponentenspezifikation übereinstimmen.
Warmwasser
Testfall-ID | Testfall-Name | Vorbedingungen und Eingänge | Aktionen | Erwartetes Ergebnis | Ergebnis | Bewertung | AusklappenKommentar |
Heizungsregler
Testfall-ID | Testfall-Name | Vorbedingungen und Eingänge | Aktionen | Erwartetes Ergebnis | Ergebnis | Bewertung | AusklappenKommentar |
Integrationstest
Nachdem der Komponententest durchgeführt wurde, wurde das Modell angepasst und wird der Integrationstest durchgeführt. Während der Komponententest die Funktionalität und Korrektheit jeder einzelnen Komponente überprüft, stellt der Integrationstest sicher, dass diese Komponenten erfolgreich zusammenarbeiten und ihre Funktionen im größeren System erfüllen können. Folgende Tabelle stellt der Integrationstest für die Gruppe HZR dar. Abbildung x zeigt der Testumgebung.
Testfall-ID | Testfall-Name | Vorbedingungen und Eingänge | Aktionen | Erwartetes Ergebnis | Ergebnis | Bewertung | AusklappenKommentar |
Systemtest
Nachdem die Integrationstest durchgeführt wurde, werden Modelle angepasst. Anschließend wird alle Modelle im Block "Auswertung" getestet und durch "scope" die Ergebnisse angezeigt. Folgende ist der Systemtest für alle Module.
Testfall-ID | Testfall-Name | Vorbedingungen und Eingänge | Aktionen | Erwartetes Ergebnis | Ergebnis | Bewertung | AusklappenKommentar |
Fazit
Im Sommersemester 2023 bestand das Ziel der Seminaraufgabe darin, den Energiehaushalt eines Hauses zu simulieren. Zu Beginn des Seminars wurde die Entscheidung getroffen, die Vorgehensweise gemäß dem V-Modell zu verwenden. Dabei werden zunächst die Anforderungen an das Endprodukt beschrieben, die schrittweise detaillierter werden. In der Implementierungsphase werden die detaillierten Anforderungen dann mit Hilfe von MATLAB Simulink modelliert. Anschließend werden die Komponententest, Integrationstest und Systemtest durchgeführt. Nach jedem Test passen alle Gruppen ihre Modelle und Komponentenspezifikationen entsprechend an und abschließend ist das Gesamtmodell mit einigen Anpassungen nach den Tests lauffähig.
Zusammenfassend können die Studierenden während dieser Seminaraufgabe das V-Modell praktisch anwenden und ihre Kenntnisse in MATLAB/Simulink vertiefen. Die Dokumentation und Archivierung mit SVN (Subversion) ermöglicht eine effiziente Verwaltung von Datei- und Projektversionen. Die gewonnenen Erfahrungen aus diesem Projekt sind für die zukünftige Arbeit der Studierenden äußerst nützlich und von großem Nutzen.
Literaturverzeichnis
- ↑ https://www.herold.at/blog/passivhaus-was-bringt-es-vorteile/
- ↑ Erstellt von Prof. Dr. Göbel Sommer 2023
- ↑ https://flamco.aalberts-hfc.com/de/catalog/pufferspeicher-und-warmwasserbereitung/warmwasserbereiter/standspeicher-flextherm-duo/flextherm-duo-120-500/18501/groups/g+c+p+a+nr+view
- ↑ https://mit-sicherheit-eps.de/acht-gruende-fuer-eps
- ↑ ttps://www.rct-power.com/de/newsreader-1393/batteriespeicher-lithium-eisenphosphat.html#:~:text=Der%20Wirkungsgrad%20einer%20LiFePO4%2DBatterie,zwischen%2093%20bis%2098%20Prozent
- ↑ https://www.creabest.de/blogs/news/so-laden-sie-lifepo4-akkus-auf
→ zum Hauptartikel: Systems Design Engineering - Seminaraufgabe SoSe 2023: Energiehaushalt eines Hauses