Energiehaushalt eines Hauses: Energiespeicher ESP: Unterschied zwischen den Versionen
Zeile 146: | Zeile 146: | ||
=== Warmwasserspeicher === | === Warmwasserspeicher === | ||
Abbildung x stellt die Implementierung des Warmwasserspeichers in Simulink dar. | Abbildung x stellt die Implementierung des Warmwasserspeichers in Simulink dar. | ||
[[Datei: Warmwasserspeicher in Simulink.png|thumb|left| | [[Datei: Warmwasserspeicher in Simulink.png|thumb|left|1200px|Abbildung x: Implementierung des Warmwasserspeichers in Simulink]]<br clear=all> | ||
Für die Simulation des Warmwasserspeichers wurde das Modell FlexTherm Duo des Herstellers Flamco als Beispiel verwendet<ref>https://flamco.aalberts-hfc.com/de/catalog/pufferspeicher-und-warmwasserbereitung/warmwasserbereiter/standspeicher-flextherm-duo/flextherm-duo-120-500/18501/groups/g+c+p+a+nr+view</ref> verwenet.<br/> | Für die Simulation des Warmwasserspeichers wurde das Modell FlexTherm Duo des Herstellers Flamco als Beispiel verwendet<ref>https://flamco.aalberts-hfc.com/de/catalog/pufferspeicher-und-warmwasserbereitung/warmwasserbereiter/standspeicher-flextherm-duo/flextherm-duo-120-500/18501/groups/g+c+p+a+nr+view</ref> verwenet.<br/> | ||
Die Gruppe HZR stellt die Warmwasserheizleistung für den Warmwasserspeicher bereit, die als Eingang fungiert. Die Leistung P wird mithilfe eines Integrators zur integrierten zugeführten Wärme <math>\dot Q </math> erfasst. Zur Berechnung der Temperaturdifferenz wird die folgende Formel verwendet: <br/> | Die Gruppe HZR stellt die Warmwasserheizleistung für den Warmwasserspeicher bereit, die als Eingang fungiert. Die Leistung P wird mithilfe eines Integrators zur integrierten zugeführten Wärme <math>\dot Q </math> erfasst. Zur Berechnung der Temperaturdifferenz wird die folgende Formel verwendet: <br/> |
Version vom 5. Juli 2023, 10:00 Uhr
Autoren: Asmaa Kachout-Aarourou; Lihui Liu
Betreuer: Prof. Dr.-Ing. M. Göbel
→ zum Hauptartikel: Systems Design Engineering - Seminaraufgabe SoSe 2023: Energiehaushalt eines Hauses
Einleitung
Im Sommersemester 2023 im Rahmen der Lehrveranstaltung Systems Design Engineering im Masterstudiengang Business and Systems Engineering soll ein Modell für den Energiehaushalt eines Hauses entwickelt werden. Das Gesamtsystem wird in sechs Module unterteilt:
- Lastkollektiv
- Energieerzeugung
- Energiespeicherung
- Heizungsregelung
- Heiz- und Klimatechnik
- Isolationseigenschaften des Hauses
Die Gruppe Kachout/Liu bearbeiten mit dem Modul Energiespeicher (kurz: ESP).
Zielsetzung der Seminaraufgabe
Das Ziel dieser Seminaraufgabe besteht darin, dass die Studierenden mithilfe der Vorgehensweise des V-Modells die Simulation eines Hauses mit Solaranlage in MATLAB/Simulink durchführen. Die sechs aufgeteilten Systeme sollen miteinander kommunizieren können. Dadurch haben die Studierenden die Möglichkeit, ihre Kenntnisse im Bereich des Energiehaushalts eines Hauses sowie der Software MATLAB/Simulink zu vertiefen.
V-Modell
Das V-Modell wird in der Softwareentwicklung häufig angewendet. Die Schritte auf der linken Seite des V-Modells umfassen die Spezifikations- und Designphase, während sich die Schritte auf der rechten Seite auf die Umsetzung und Testphase konzentrieren. Diese Phasen sind aufeinander aufbauend und führen zur Entstehung eines vollständigen Systems.
Die Durchführung der Seminaraufgabe basierend auf dem V-Modell ist in Abbildung 2 wie folgt aufgeteilt:
- Anforderungsdefinition
- Funktionaler Systementwurf
- Technischer Systementwurf
- Komponentenspezifikation
- Programmierung/Modellierung
- Komponententest
- Integrationstest
- Systemtest
Anforderungsdefinition: Lastenheft
Funktionaler Systementwurf
Technischer Systementwurf
Komponentenspezifikation
Nach dem technischen Systementwurf werden die einzelnen Komponenten detailliert spezifiziert. In den Spezifikationen wird ihre Funktionen beschrieben und wie die Komponenten umgesetzt werden sollen.
Solarmanager
Eingänge
- EEZ_PVleistungAC [W]
- ESP_Bateriezustand
Ausgänge
- ESP_Strom (Batteriespeicher)[A]
- ESP_Stromnetz (Verkaufen)[W]
- ESP_Verbrauch [%]
Parameter
- PAR_SMWirkungsgrad [%]
ID | Kapitel | Inhalt | Ersteller | Datum |
1 | Tag mit Sonneneinstrahlung: Der Laderegler erkennt, dass die Sonneneinstrahlung ausreicht, um den Stromverbrauch zu decken und die Batterie aufzuladen: Eingänge EEZ_PVleistungAC > LKT_LeistunglVerbrauch+HZT_LeistunglVerbrauch--> Ausgang : Verbrauch=LKT_LeistunglVerbrauch+HZT_LeistunglVerbrauch | Kachout, Liu | 13.05.2023 | |
2 | Tag ohne Sonneneinstrahlung: Da keine Sonneneinstrahlung vorhanden ist und der Stromverbrauch höher ist als die Batterieleistung, erkennt der Laderegler, dass der Strom aus dem Netz bezogen werden muss Eingänge: EEZ_PVleistungAC < LKT_LeistunglVerbrauch+HZT_LeistunglVerbrauch--> Ausgang : Verbrauch aus Netz=LKT_LeistunglVerbrauch+HZT_LeistunglVerbrauch | Kachout, Liu | 13.05.2023 | |
3 | Tag mit Sonneneinstrahlung:Der Laderegler erkennt, dass die Batterie bereits vollständig aufgeladen ist, der Stromverbrauch sehr niedrig ist. In diesem Fall wird der überschüssige Strom ins Netz eingespeist Eingänge: EEZ_PVLeistung >LKT_LeistunglVerbrauch+HZT_LeistunglVerbrauch und EEZ_PVLeistung > BatterieZustand Ausgänge : Verbrauch=LKT_LeistunglVerbrauch+HZT_LeistunglVerbrauch und Netz: EEZ_PVLeistung - (LKT_LeistunglVerbrauch+HZT_LeistunglVerbrauch) | Kachout, Liu | 13.05.2023 |
Akku
Eingänge
- EEZ_PVleistungAC[W]
- PAR_ESP_SollVerbrauch[W]
Ausgänge
- ESP_BatterieZustand
Parameter
- PAR_BTWirkungsgrad[%]
- PAR_ESP_Batteriekapazität[Ah]
- PAR_ESP_DoD[%]
- PAR_ESP_SoC[%]
ID | Kapitel | Inhalt | Ersteller | Datum |
1 | Die Batteriekapazität stellt mit dem konstant 7 kWh dar | Kachout, Liu | 08.05.2023 | |
2 | P=E/t --> Leistung [w] in Energie Umwandeln [Wh] | Kachout, Liu | 08.05.2023 | |
3 | Die Energiespeicherung in Akku stellt mit dem Integrator dar | Kachout, Liu | 08.05.2023 | |
4 | Akku muss mit Saturation verbunden werden, um die grenzen von Akkukapazität zu bestimmen | Kachout, Liu | 08.05.2023 | |
5 | Wirkungsgrad von der Batterie (LiFePO4-Akkus) | Kachout, Liu | 08.05.2023 | |
6 | Depth of Discharge: 80% (LiFePO4-Akkus) d.h. Max. Ladung ist 20160000 [Ws] | Kachout, Liu | 28.05.2023 | |
7 | State of Charge: 20% (LiFePO4-Akkus) d.h. Max Entladung= 5040000 ws --> wenn die Batteriezustand auf 5040000 [Ws] ist "Batterie leer" | Kachout, Liu | 28.05.2023 |
Warmwasserspeicher
Eingänge
- HZR_Heizleistung[W]
Ausgänge
- ESP_WarmwasserTemperatur[°C]
Parameter
- PAR_ESP_Wärmekap(Wärmekapazität von Wasser)[J/(g*K)]
- PAR_ESP_VolumenWarmwasser [m^3]
- PAR_ESP_Anfangstemperatur [°C]
- PAR_ESP_Wasserdichte[kg/m^3]
- PAR_ESP_WLF_EPS W/(mK)
- PAR_ESP_Heizfläche [m^2]
- PAR_ESP_ISO_Dicke [m]
ID | Kapitel | Inhalt | Ersteller | Datum |
1 | Der Eingang HZR_Heizleistung soll durch Saturation begrenzt werden | Kachout, Liu | 08.05.2023 | |
2 | Die zugeführte Wärmeenergie besteht aus die Leistung aus Heizung und Wärmeverluste | Kachout, Liu | 08.05.2023 | |
3 | Die zugeführte Wärmeenergie ist durch Integrator der Leistung berechnet werden | Kachout, Liu | 08.05.2023 | |
4 | Umrechnung von zugeführter Leistung in Temperaturanstieg des Wassers durch die Formel: ∆T=Q/(m∙c) | Kachout, Liu | 08.05.2023 | |
5 | Durch die Formel: Q=(λ∙A∙∆T)/d wird die verlorene Wärme berechnet | Kachout, Liu | 13.05.2023 | |
6 | Die berechnete Temperatur werden von Kelvin zum Grad umgewandelt werden | Kachout, Liu | 13.05.2023 | |
7 | Der Ausgang ist die Summe zwischen Anfangstemperatur und Temperaturdifferenz in Grad | Kachout, Liu | 13.05.2023 |
Programmierung / Modellierung
Bei der Programmierung werden die Komponenten gemäß den zuvor definierten Spezifikationen umgesetzt. Die Implementierung erfolgt im bereits erstellten Simulink-Modell, das für den technischen Systementwurf entwickelt wurde. Die verwendeten Parameter werden separat in einer Matlab-Datei zusammengefasst und beim Start des Modells aufgerufen, um die entsprechenden Konstanten im Workspace zu erstellen.
Warmwasserspeicher
Abbildung x stellt die Implementierung des Warmwasserspeichers in Simulink dar.
Für die Simulation des Warmwasserspeichers wurde das Modell FlexTherm Duo des Herstellers Flamco als Beispiel verwendet[3] verwenet.
Die Gruppe HZR stellt die Warmwasserheizleistung für den Warmwasserspeicher bereit, die als Eingang fungiert. Die Leistung P wird mithilfe eines Integrators zur integrierten zugeführten Wärme erfasst. Zur Berechnung der Temperaturdifferenz wird die folgende Formel verwendet:
steht für die spezifische Wärmekapizität. Die Wärmekapizität von Wasser ist .
Um die Einheiten konsistent zu halten, wurde die Wärmekapizität in Parameter.m als gegeben.
repräsentiert die Masse des zu erwärmenden Wassers. Die Masse können durch die Formel berechnet werden: .
ist die Wasserdichte und beträgt 1 kg/m3
.
Das Wasservolumen wird in Litern angegeben, aber für die Einheitsumwandlung wird es durch 1000 geteilt, um es in m³ umzurechnen.
Anschließend wird die anfängliche Temperatur (Annahme: 10 Grad) mit dieser Temperaturdifferenz addiert. Das Ergebnis wird als Ausgang ESP_Warmwassertemperatur ausgegeben und anderen Gruppen zur Verfügung gestellt.
Es gibt gewiss Wärmeverluste in einem Warmwasserspeicher. Die folgende Formel ist zur Berechnung der verlorene Wärme:
.
ist der Wärmefluss der Isolierung.
ist die Wärmeleitfähigkeit des Isoliermaterials. Laut dem Datenblatt von FlexTherm Duo wird Polystyrol als Isoliermaterial verwendet. In der FSDE[4] liegt die Wärmeleitfähigkeit von expandiertem Polystyrol zwischen 0,032 und 0,040 Watt pro Meter und Kelvin. Im Simulink wird die Parameter mit dem Name PAR_WLF_EPS = 0,032 angegeben.
ist die Fläche der Isolierung. Gemäß dem Datenblatt beträgt die Heizfläche 0,5 m2.
ist die Temperaturdifferenz zwischen dem Warmwasserspeicher und der Umgebung, die bereits berechnet wurde.
ist die Dicke der Isolierungsschicht. Im Datenblatt wird die Isolierungsdicke mit 0,08 m angegeben.
Nachdem die verlorene Wärme berechnet wurden, wird sie durch den Block Add mit "+-" mit der Warmwasserheizleistung der Gruppe HZR ausgeglichen.
Energiespeicher
Komponententest
Integrationstest
Systemtest
Testfall-ID | Testfall-Name | Vorbedingungen und Eingänge | Aktionen Erwartetes | Ergebnis | Ergebnis | Bewertung |
---|---|---|---|---|---|---|
001 | Funktionalität der Blöcke | Parameter geladen und Signale definiert. | Funktionstest | Programm zeigt keine Fehlermeldungen | Programm zeigt keine Fehlermeldungen | i. O. |
002 | Testen der Isolierungsfunktion | Parameter geladen, Simulation eines Zeitschritts | Überprüfung der ISO-Temperatur, ob Heizleistung gibt (ggf. Heizung funktioniert) | Wenn Heizung regelt die Temperatur, ISO_IstTemp soll HZR-Solltemperatur sich näheren | ISO_IstTemp nähert sich die HZR-Solltemperatur | i. O. |
003 | Testen der Funktion der Heizleistung | Parameter geladen, Simulation eines Zeitschritts | Testen im Winter ob Heizung funktioniert (ggf. Heizleistung gibt) | Wenn LKT_Temp kleiner als HZR-Solltemperatur ist, soll die Heizleistung erhöht werden und wenn Solltemperatur erreicht, bleibt die Heizleistung konstant. | Am Anfang passt das Ergebnis, dann bei reduzierter Temperatur gibt es keine Heizleistung mehr und wieder steigert | n. i. O. |
004 | Testen der erzeugte Solarenergie | Parameter geladen. | Simulation eines Zeitschritts | Die Energie nimmt am Tag zu und nimmt am Nacht ab | Die Energie nimmt am Tag zu und nimmt am Nacht ab | i. O. |
005 | Testen der Wassertemperatur | Parameter geladen. | Simulation eines Zeitschritts | Wassertemperatur nimmt zu und ab. | Wassertemperatur reduziert von 0 Grad bis -6000 Grad und nimmt zu. | n. i. O. |
006 | Testfall für das Block HZT | Parameter geladen. | Vergleich HZR_Leistung und HZT_Verbrauchteleistung | Wenn Tempertaur -10 Grad und HZR_Heizleistung = 2400 W ist, HZT_VerbrauchteLeistung = 2400W/1.7=1412W | HZT_VerbrauchteLeistung =1412W (Aus der Abbildung ist ungefähr so) | i. O. |
Fazit
Literaturverzeichnis
- ↑ https://www.herold.at/blog/passivhaus-was-bringt-es-vorteile/
- ↑ Erstellt von Prof. Dr. Göbel Sommer 2023
- ↑ https://flamco.aalberts-hfc.com/de/catalog/pufferspeicher-und-warmwasserbereitung/warmwasserbereiter/standspeicher-flextherm-duo/flextherm-duo-120-500/18501/groups/g+c+p+a+nr+view
- ↑ https://mit-sicherheit-eps.de/acht-gruende-fuer-eps
→ zum Hauptartikel: Systems Design Engineering - Seminaraufgabe SoSe 2023: Energiehaushalt eines Hauses