Energiehaushalt eines Hauses: Energiespeicher ESP: Unterschied zwischen den Versionen

Aus HSHL Mechatronik
Zur Navigation springen Zur Suche springen
Zeile 182: Zeile 182:
|-
|-
| 003 || Testen der Funktion der Heizleistung  || Parameter geladen, Simulation eines Zeitschritts || Testen im Winter ob Heizung funktioniert (ggf. Heizleistung gibt) || Wenn LKT_Temp kleiner als HZR-Solltemperatur ist, soll die Heizleistung erhöht werden und wenn Solltemperatur erreicht, bleibt die Heizleistung konstant. || Am Anfang passt das Ergebnis, dann bei reduzierter Temperatur gibt es keine Heizleistung mehr und wieder steigert || n. i. O.
| 003 || Testen der Funktion der Heizleistung  || Parameter geladen, Simulation eines Zeitschritts || Testen im Winter ob Heizung funktioniert (ggf. Heizleistung gibt) || Wenn LKT_Temp kleiner als HZR-Solltemperatur ist, soll die Heizleistung erhöht werden und wenn Solltemperatur erreicht, bleibt die Heizleistung konstant. || Am Anfang passt das Ergebnis, dann bei reduzierter Temperatur gibt es keine Heizleistung mehr und wieder steigert || n. i. O.
[[Testfall003.png|left|mini|300px|Abbildung 11: Testfall 003]]
[[Datei:Testfall003.png|left|mini|300px|Abbildung 11: Testfall 003]]
|-
|-
| 004 || Klimatisierung an (Wärmepumpen-Heizung), Außentemperatur 10°C, Tür geschlossen, keine Sonneneinstrahlung || Die Temperatur wird zwischen 19°C und 20°C gehalten, die Heizung läuft im Intervallbetrieb. || Entspricht der Erwartung. ||  
| 004 || Testen der erzeugte Solarenergie || Parameter geladen. || Simulation eines Zeitschritts || Die Energie nimmt am Tag zu und nimmt am Nacht ab || Die Energie nimmt am Tag zu und nimmt am Nacht ab || i. O.
[[Datei:Test4.png|left|mini|300px|Abbildung 12: Innentemperaturverlauf und Leistungsaufnahme Klimatisierung Test 4]]
[[Datei:Testfall004.png|left|mini|300px|Abbildung 12: Testfall 004]]
|-
|-
| 005 || Klimatisierung an (Resistive Heizung), Außentemperatur 10°C, Tür geschlossen, keine Sonneneinstrahlung || Die Temperatur wird zwischen 19°C und 20°C gehalten, die Heizung läuft im Intervallbetrieb, die Intervalldauer und somit der Energieverbrauch ist höher als in Testfall 5. || Entspricht der Erwartung. ||  
| 005 || Testen der Wassertemperatur || Parameter geladen. || Simulation eines Zeitschritts ||Wassertemperatur nimmt zu und ab. || Wassertemperatur reduziert von 0 Grad bis -6000 Grad und nimmt zu. || n. i. O.
[[Datei:FKI Test5.png|left|mini|300px|Abbildung 13: Innentemperaturverlauf und Leistungsaufnahme Klimatisierung Test 5]]
[[Datei:Testfall005.png.png|left|mini|300px|Abbildung 13: Testfall 005]]
|-
|-
| 006 || Klimatisierung an (Wärmepumpen-Heizung), Außentemperatur 30°C, Tür geschlossen, keine Sonneneinstrahlung || Die Temperatur wird wie erwartet zwischen 20°C und 21°C gehalten, die Klimatisierung läuft im Intervallbetrieb. || Entspricht der Erwartung. ||  
| 006 || Testfall für das Block HZT  || Parameter geladen. || Vergleich HZR_Leistung und HZT_Verbrauchteleistung|| Wenn Tempertaur -10 Grad und HZR_Heizleistung = 2400 W ist, HZT_VerbrauchteLeistung = 2400W/1.7=1412W  || HZT_VerbrauchteLeistung =1412W  (Aus der Abbildung ist ungefähr so) || i. O.
[[Datei:FKI Test6.png|left|mini|300px|Abbildung 14: Innentemperaturverlauf und Leistungsaufnahme Klimatisierung Test 6]]
[[Datei:Testfall006.png|left|mini|300px|Abbildung 14: Testfall 006]]
|}
|}


Die unten abgebildete verwendete Testumgebung besteht aus dem Modul, zur eigenständigen Ausführung sind die Eingänge durch Konstanten ersetzt. Außerdem werden zwei Scopes zur Auswertung verwendet.
[[Datei:FKITest.png|800px|thumb|left|Abbildung 15: Testumgebung für das Modul FKI]]
<br clear = all>
<br clear = all>



Version vom 4. Juli 2023, 20:54 Uhr

Abbildung 1: Symbolbild der Seminaraufgabe [1]

Autoren: Asmaa Kachout-Aarourou; Lihui Liu
Betreuer: Prof. Dr.-Ing. M. Göbel

→ zum Hauptartikel: Systems Design Engineering - Seminaraufgabe SoSe 2023: Energiehaushalt eines Hauses


Einleitung

Im Sommersemester 2023 im Rahmen der Lehrveranstaltung Systems Design Engineering im Masterstudiengang Business and Systems Engineering soll ein Modell für den Energiehaushalt eines Hauses entwickelt werden. Das Gesamtsystem wird in sechs Module unterteilt:

  • Lastkollektiv
  • Energieerzeugung
  • Energiespeicherung
  • Heizungsregelung
  • Heiz- und Klimatechnik
  • Isolationseigenschaften des Hauses

Die Gruppe Kachout/Liu bearbeiten mit dem Modul Energiespeicher (kurz: ESP).

Zielsetzung der Seminaraufgabe

Das Ziel dieser Seminaraufgabe besteht darin, dass die Studierenden mithilfe der Vorgehensweise des V-Modells die Simulation eines Hauses mit Solaranlage in MATLAB/Simulink durchführen. Die sechs aufgeteilten Systeme sollen miteinander kommunizieren können. Dadurch haben die Studierenden die Möglichkeit, ihre Kenntnisse im Bereich des Energiehaushalts eines Hauses sowie der Software MATLAB/Simulink zu vertiefen.

V-Modell

Abbildung 2: V-Modell 2023 [2]


Das V-Modell wird in der Softwareentwicklung häufig angewendet. Die Schritte auf der linken Seite des V-Modells umfassen die Spezifikations- und Designphase, während sich die Schritte auf der rechten Seite auf die Umsetzung und Testphase konzentrieren. Diese Phasen sind aufeinander aufbauend und führen zur Entstehung eines vollständigen Systems. Die Durchführung der Seminaraufgabe basierend auf dem V-Modell ist in Abbildung 2 wie folgt aufgeteilt:

  • Anforderungsdefinition
  • Funktionaler Systementwurf
  • Technischer Systementwurf
  • Komponentenspezifikation
  • Programmierung/Modellierung
  • Komponententest
  • Integrationstest
  • Systemtest


Anforderungsdefinition: Lastenheft

Funktionaler Systementwurf

Technischer Systementwurf

Komponentenspezifikation

Nach dem technischen Systementwurf werden die einzelnen Komponenten detailliert spezifiziert. In den Spezifikationen wird ihre Funktionen beschrieben und wie die Komponenten umgesetzt werden sollen.

Solarmanager

Eingänge

  • EEZ_PVleistungAC [W]
  • ESP_Bateriezustand

Ausgänge

  • ESP_Strom (Batteriespeicher)[A]
  • ESP_Stromnetz (Verkaufen)[W]
  • ESP_Verbrauch [%]

Parameter

  • PAR_SMWirkungsgrad [%]
ID Kapitel Inhalt Ersteller Datum
1 Tag mit Sonneneinstrahlung: Der Laderegler erkennt, dass die Sonneneinstrahlung ausreicht, um den Stromverbrauch zu decken und die Batterie aufzuladen: Eingänge EEZ_PVleistungAC > LKT_LeistunglVerbrauch+HZT_LeistunglVerbrauch--> Ausgang : Verbrauch=LKT_LeistunglVerbrauch+HZT_LeistunglVerbrauch Kachout, Liu 13.05.2023
2 Tag ohne Sonneneinstrahlung: Da keine Sonneneinstrahlung vorhanden ist und der Stromverbrauch höher ist als die Batterieleistung, erkennt der Laderegler, dass der Strom aus dem Netz bezogen werden muss Eingänge: EEZ_PVleistungAC < LKT_LeistunglVerbrauch+HZT_LeistunglVerbrauch--> Ausgang : Verbrauch aus Netz=LKT_LeistunglVerbrauch+HZT_LeistunglVerbrauch Kachout, Liu 13.05.2023
3 Tag mit Sonneneinstrahlung:Der Laderegler erkennt, dass die Batterie bereits vollständig aufgeladen ist, der Stromverbrauch sehr niedrig ist. In diesem Fall wird der überschüssige Strom ins Netz eingespeist Eingänge: EEZ_PVLeistung >LKT_LeistunglVerbrauch+HZT_LeistunglVerbrauch und EEZ_PVLeistung > BatterieZustand Ausgänge : Verbrauch=LKT_LeistunglVerbrauch+HZT_LeistunglVerbrauch und Netz: EEZ_PVLeistung - (LKT_LeistunglVerbrauch+HZT_LeistunglVerbrauch) Kachout, Liu 13.05.2023

Akku

Eingänge

  • EEZ_PVleistungAC[W]
  • PAR_ESP_SollVerbrauch[W]

Ausgänge

  • ESP_BatterieZustand

Parameter

  • PAR_BTWirkungsgrad[%]
  • PAR_ESP_Batteriekapazität[Ah]
  • PAR_ESP_DoD[%]
  • PAR_ESP_SoC[%]
ID Kapitel Inhalt Ersteller Datum
1 Die Batteriekapazität stellt mit dem konstant 7 kWh dar Kachout, Liu 08.05.2023
2 P=E/t --> Leistung [w] in Energie Umwandeln [Wh] Kachout, Liu 08.05.2023
3 Die Energiespeicherung in Akku stellt mit dem Integrator dar Kachout, Liu 08.05.2023
4 Akku muss mit Saturation verbunden werden, um die grenzen von Akkukapazität zu bestimmen Kachout, Liu 08.05.2023
5 Wirkungsgrad von der Batterie (LiFePO4-Akkus) Kachout, Liu 08.05.2023
6 Depth of Discharge: 80% (LiFePO4-Akkus) d.h. Max. Ladung ist 20160000 [Ws] Kachout, Liu 28.05.2023
7 State of Charge: 20% (LiFePO4-Akkus) d.h. Max Entladung= 5040000 ws --> wenn die Batteriezustand auf 5040000 [Ws] ist "Batterie leer" Kachout, Liu 28.05.2023

Warmwasserspeicher

Eingänge

  • HZR_Heizleistung[W]

Ausgänge

  • ESP_WarmwasserTemperatur[°C]

Parameter

  • PAR_ESP_Wärmekap(Wärmekapazität von Wasser)[J/(g*K)]
  • PAR_ESP_VolumenWarmwasser [m^3]
  • PAR_ESP_Anfangstemperatur [°C]
  • PAR_ESP_Wasserdichte[kg/m^3]
  • PAR_ESP_WLF_EPS W/(mK)
  • PAR_ESP_Heizfläche [m^2]
  • PAR_ESP_ISO_Dicke [m]
ID Kapitel Inhalt Ersteller Datum
1 Der Eingang HZR_Heizleistung soll durch Saturation begrenzt werden Kachout, Liu 08.05.2023
2 Die zugeführte Wärmeenergie besteht aus die Leistung aus Heizung und Wärmeverluste Kachout, Liu 08.05.2023
3 Die zugeführte Wärmeenergie ist durch Integrator der Leistung berechnet werden Kachout, Liu 08.05.2023
4 Umrechnung von zugeführter Leistung in Temperaturanstieg des Wassers durch die Formel: ∆T=Q/(m∙c) Kachout, Liu 08.05.2023
5 Durch die Formel: Q=(λ∙A∙∆T)/d wird die verlorene Wärme berechnet Kachout, Liu 13.05.2023
6 Die berechnete Temperatur werden von Kelvin zum Grad umgewandelt werden Kachout, Liu 13.05.2023
7 Der Ausgang ist die Summe zwischen Anfangstemperatur und Temperaturdifferenz in Grad Kachout, Liu 13.05.2023

Programmierung / Modellierung

Bei der Programmierung werden die Komponenten gemäß den zuvor definierten Spezifikationen umgesetzt. Die Implementierung erfolgt im bereits erstellten Simulink-Modell, das für den technischen Systementwurf entwickelt wurde. Die verwendeten Parameter werden separat in einer Matlab-Datei zusammengefasst und beim Start des Modells aufgerufen, um die entsprechenden Konstanten im Workspace zu erstellen.

Warmwasserspeicher

Abbildung x stellt die Implementierung des Warmwasserspeichers in Simulink dar.

Abbildung x: Implementierung des Warmwasserspeichers in Simulink


Für die Simulation des Warmwasserspeichers wurde das Modell FlexTherm Duo des Herstellers Flamco als Beispiel verwendet[3] verwenet.
Die Gruppe HZR stellt die Warmwasserheizleistung für den Warmwasserspeicher bereit, die als Eingang fungiert. Die Leistung P wird mithilfe eines Integrators zur integrierten zugeführten Wärme erfasst. Zur Berechnung der Temperaturdifferenz wird die folgende Formel verwendet:

steht für die spezifische Wärmekapizität. Die Wärmekapizität von Wasser ist .
Um die Einheiten konsistent zu halten, wurde die Wärmekapizität in Parameter.m als gegeben.
repräsentiert die Masse des zu erwärmenden Wassers. Die Masse können durch die Formel berechnet werden: .
ist die Wasserdichte und beträgt 1 kg/m3
. Das Wasservolumen wird in Litern angegeben, aber für die Einheitsumwandlung wird es durch 1000 geteilt, um es in m³ umzurechnen. Anschließend wird die anfängliche Temperatur (Annahme: 10 Grad) mit dieser Temperaturdifferenz addiert. Das Ergebnis wird als Ausgang ESP_Warmwassertemperatur ausgegeben und anderen Gruppen zur Verfügung gestellt.

Es gibt gewiss Wärmeverluste in einem Warmwasserspeicher. Die folgende Formel ist zur Berechnung der verlorene Wärme:
.
ist der Wärmefluss der Isolierung.
ist die Wärmeleitfähigkeit des Isoliermaterials. Laut dem Datenblatt von FlexTherm Duo wird Polystyrol als Isoliermaterial verwendet. In der FSDE[4] liegt die Wärmeleitfähigkeit von expandiertem Polystyrol zwischen 0,032 und 0,040 Watt pro Meter und Kelvin. Im Simulink wird die Parameter mit dem Name PAR_WLF_EPS = 0,032 angegeben.
ist die Fläche der Isolierung. Gemäß dem Datenblatt beträgt die Heizfläche 0,5 m2.
ist die Temperaturdifferenz zwischen dem Warmwasserspeicher und der Umgebung, die bereits berechnet wurde.
ist die Dicke der Isolierungsschicht. Im Datenblatt wird die Isolierungsdicke mit 0,08 m angegeben.
Nachdem die verlorene Wärme berechnet wurden, wird sie durch den Block Add mit "+-" mit der Warmwasserheizleistung der Gruppe HZR ausgeglichen.

Energiespeicher

Komponententest

Integrationstest

Systemtest

Modultests
Testfall-ID Testfall-Name Vorbedingungen und Eingänge Aktionen Erwartetes Ergebnis Ergebnis Bewertung
001 Funktionalität der Blöcke Parameter geladen und Signale definiert. Funktionstest Programm zeigt keine Fehlermeldungen Programm zeigt keine Fehlermeldungen i. O.
002 Testen der Isolierungsfunktion Parameter geladen, Simulation eines Zeitschritts Überprüfung der ISO-Temperatur, ob Heizleistung gibt (ggf. Heizung funktioniert) Wenn Heizung regelt die Temperatur, ISO_IstTemp soll HZR-Solltemperatur sich näheren ISO_IstTemp nähert sich die HZR-Solltemperatur i. O.
Abbildung 10: Testfall 002
003 Testen der Funktion der Heizleistung Parameter geladen, Simulation eines Zeitschritts Testen im Winter ob Heizung funktioniert (ggf. Heizleistung gibt) Wenn LKT_Temp kleiner als HZR-Solltemperatur ist, soll die Heizleistung erhöht werden und wenn Solltemperatur erreicht, bleibt die Heizleistung konstant. Am Anfang passt das Ergebnis, dann bei reduzierter Temperatur gibt es keine Heizleistung mehr und wieder steigert n. i. O.
Abbildung 11: Testfall 003
004 Testen der erzeugte Solarenergie Parameter geladen. Simulation eines Zeitschritts Die Energie nimmt am Tag zu und nimmt am Nacht ab Die Energie nimmt am Tag zu und nimmt am Nacht ab i. O.
Abbildung 12: Testfall 004
005 Testen der Wassertemperatur Parameter geladen. Simulation eines Zeitschritts Wassertemperatur nimmt zu und ab. Wassertemperatur reduziert von 0 Grad bis -6000 Grad und nimmt zu. n. i. O.
Abbildung 13: Testfall 005
006 Testfall für das Block HZT Parameter geladen. Vergleich HZR_Leistung und HZT_Verbrauchteleistung Wenn Tempertaur -10 Grad und HZR_Heizleistung = 2400 W ist, HZT_VerbrauchteLeistung = 2400W/1.7=1412W HZT_VerbrauchteLeistung =1412W (Aus der Abbildung ist ungefähr so) i. O.
Abbildung 14: Testfall 006


Fazit

Literaturverzeichnis




→ zum Hauptartikel: Systems Design Engineering - Seminaraufgabe SoSe 2023: Energiehaushalt eines Hauses