Zuführung der Legosteine mittels Vibrationswendelförderer: Unterschied zwischen den Versionen

Aus HSHL Mechatronik
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
 
(555 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
[[Katergorie:Automatische Legostein-Montieranlage]]
'''Hauptartikel:'''[[Automatische_Legostein-Montieranlage | Automatische Legostein-Montieranlage]]
 
 
'''Autor:''' [[Benutzer:Daniel_Freitag|Daniel Freitag]], [[Benutzer:Markus_Skrobol|Markus Skrobol]]
 
'''Betreuer:'''[[Benutzer:Mirekgoebel| Prof. Dr. Mirek Göbel]]
[[Datei:Vibrationswendelförderer_Anlage.PNG|thumb|700px|Abb.1 Anlage Vibrationswendelförderer]]
 
 
 
 


IN BEARBEITUNG!!!


'''Autor:''' Daniel Freitag und Markus Skrobol


== Einleitung ==
== Einleitung ==
Dieser Artikel entstand im Rahmen des Produktionstechnik Praktikum im 7 Semester des Studiengangs [http://www.hshl.de/mechatronik-bachelorstudiengang/ Mechatronik]
Dieser Artikel entstand im Rahmen des Produktionstechnik Praktikums im 7 Semester des Studiengangs [http://www.hshl.de/mechatronik-bachelorstudiengang/ Mechatronik]. Ziel des Beitrags ist es, eine nachhaltige Dokumentation zu schaffen, welche das weitere Arbeiten am Projekt ermöglicht und die erreichten Ergebnisse festhält.[[Datei:Funktionsplan_Abschnitt_Gruppe.1.png|thumb|mini|250px|Abb.2 Zeigt den für diese Gruppe relevanten Ausschnitt des [[Automatische_Legostein-Montieranlage#Strukturierung_der_Aufgabedargestellten | Funktionsablaufplans9].]]
 
Dieser Artikel handelt über ein Teilprojekt des '''Hauptartikels:'''"[[Automatische_Legostein-Montieranlage | Automatische Legostein-Montieranlage]]". Das Teilprojekt umfasste, wie in Abb.2 zusehen, die Punkte eins bis sechs des [[Automatische_Legostein-Montieranlage#Strukturierung_der_Aufgabe | dargestellten Funktionsablaufplans]] im Hauptartikelabschnitt '''"Strukturierung der Aufgabe"'''.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
== Aufgabestellung ==
Die Aufgabe dieser Projektgruppe war es, unsortierte Legosteine lagerichtig mit"Noppen" nach oben & lange Seite nach außen zu orientieren, zu transportieren und diese vereinzelt an die Gruppe "[[Förderung der Legosteine und Rücktransport in den Vibrationswendelförderer]]" zu übergeben.
 
Hierzu musste ein neuer Fördertopf entworfen und mittels 3D-Druckverfahren hergestellt werden. Des Weiter sollte die Abschaltung des [[Vibrationswendelförderer_mit_PiCo_Regelgerät_NA/B.4/65.3-bi-V1#Funktionsweise_des_Vibrationswendelf.C3.B6rderers | Vibrationswendelförderers]] bei
besetztem Förderband realisiert werden.
 
== Vorbereitungen ==
 
Zu Beginn des Projektes mussten folgende Vorbereitungen getroffen werden:
 
* Absprache der Positionierung und Bauhöhe des [[Vibrationswendelförderer_mit_PiCo_Regelgerät_NA/B.4/65.3-bi-V1#PiCo_Regelger.C3.A4t_NA.2FB.4.2F65.3-bi-V1 | Vibrationswendelförderers]] mit der Projektgruppe "[[Förderung der Legosteine und Rücktransport in den Vibrationswendelförderer]]".
* Festlegung der benötigten Bauteile.
* Der Bedarf an Ein- und Ausgängen für die [[Phoenix_Contact_AXC_Trainer_1050_PN | SPS]] musste mit der Projektgruppe "[[Steuerung der automatischen Legostein-Montieranlage]]" abgestimmt werden.
* Anforderungen an die Konstruktion des neuen Fördertopfes festlegen.
 
----
== Verwendete Bauteile ==
 
{| class="mw-datatable"
! style="font-weight: bold;" | Nr.:
! style="font-weight: bold;" | Artikel:
! style="font-weight: bold;" | Artikelbeschreibung:
! style="font-weight: bold;" | Menge in [Stück]
! style="font-weight: bold;" | Datenblatt
|-
| 1.
| [[Vibrationswendelförderer_mit_PiCo_Regelgerät_NA/B.4/65.3-bi-V1#PiCo_Regelger.C3.A4t_NA.2FB.4.2F65.3-bi-V1 | Vibrationswendelförderer & PiCo Regelgerät]]
| Zum Befördern und ordnen der Legosteine
| 1
|[[Datei:PiCo_Regelgerät.PDF|<ref> [[Datei:PiCo_Regelgerät.PDF]] </ref>]]
|-
| 2.
| M12 Sensorleitung
| Zum Anschluss des Vibrationswendelförderers an die SPS
| 1
|[[Datei:M12 Sensorleitung PVC 5-polig Stift gerade.pdf|<ref> [[Datei:M12 Sensorleitung PVC 5-polig Stift gerade.pdf]] </ref>]]
|-
| 3.
| [[Optoelektronischer_Sensor_CY-100 | Reflektion-Lichttaster]]
| Zur Ermittlung ob das Förderband besetzt ist
| 1
|[[Datei:Optoelektronischer_Sensor_CY-100.pdf|<ref> [[Datei:Optoelektronischer_Sensor_CY-100.pdf]] </ref>]]
|}
 
== Konstruktion  ==
 
=== Anforderungen an die Konstruktion ===
'''Es wurden folgende Maße und Bedingungen, für die Konstruktion des Förderertopfes, festgelegt:'''
 
*maximale Höhe des Fördertopfrandbereiches: 230 mm
 
*Übergabehöhe der Auslaufbahn an das Förderband: 205 mm
 
*maximaler Durchmesser: 150 mm
 
*Auslaufposition der Lego-Bausteine: mittig, da die Rückführung der Bausteine über eine Linearachse realisiert werden sollte.
 
*Überstehende Bauteile sollten, wenn möglich mit 45° Schrägen unterstützt werden, um den 3D-Druck des Bauteils zu verkürzen.
 
'''Herausforderungen an die Konstruktion:'''
 
*Konstruktion des Topfes von innen nach außen.
 
*Durchführung einiger Änderungen, durch den Ausfall eines 3D-Druckers auf dem die ursprüngliche CAD-Datei ausgelegt wurde.
 
*Bahnbreitenauslegung in der Förderbahn innerhalb des Fördertopfes und der Auslaufbahn.
 
----
 
=== 3D-Modellierung des Fördertopfes ===
An dieser Stelle sollen die wichtigsten Schritte zur Anfertigung des, in diesem Projekt verwendeten, Topfrohlings und der Auslaufbahn beschrieben werden. Die Bauteile wurden hierzu mit der '''Software: Solidworks''' in der '''Version:2016''' konstruiert.
 
'''Schritt.1:''' Neue Skizze auf einer beliebigen Ebene erstellen.
 
 
 
 
 
'''Schritt.2:''' Kreis aus dem Ursprung der Skizze zeichnen und mit dem gewünschten Durchmesser des Topfes bemaßen.
 
[[Datei:In_den_Koordinatenursprung_mit_der_linken_maustaste_klicken.png|links|mini|250px|Abb.3 Zeigt wie ein Kreis aus dem Koordinatenursprung skizziert wird.]]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
'''Schritt.3:''' Konstruktion der Helix
 
In die Feature Auswahl wechseln und anschließend rechts in der Werkzeugleiste "Kurven" daraus den Reiter "Helix und Spirale" auswählen.
 
[[Datei:Rechts_in_der_Werkzeugleiste_Kurven_und_Spiralhelix_auswählen.png|links|mini|250px|Abb.4 Zeigt den auszuwählenden Reiter "Helix & Spirale" aus dem Feature "Kurven"]]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In diesem Feature können nun unterschiedliche Einstellungen vorgenommen werde.
 
[[Datei:Helix.png|links|mini|250px|In Abb.5 ist die Kurve der Helix dargestellt.]]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Für die Konstruktion des verwendeten Fördertopfes wurden folgende Einstellungen verwendet:
 
*Steigungshöhe: 35 mm
 
*Umdrehungen: 1 (Skalierung der Höhe und des Auslaufübergabewinkels)
 
*Ausgangswinkel: 90 Grad (erleichtert die nachfolgenden Konstruktionsschritte)
 
*Verjüngung der Spirale: 0 Grad (Einfacher für den 3D-Druck)
 
 
'''Schritt.4:''' Konstruktion der Transportlaufbahn für die Lego-Bausteine mit Verknüpfung an die "Helix/Spirale"
 
Für diesen Schritt wurde die Förderbahnbreite mit folgender Kreisfunktion berechnet:
 
 
                                          <math>f(x)=\sqrt{r^2-x^2}</math>
 
 
Benötigte Parameter für die Berechnung:
 
*Radius
 
*halbe Bauteillänge des Bauteils.
 
In diesem Fall:
                                          <math>\mbox{Topfaussenradius}= r_a = 70\mbox{ mm} </math>               
                                         
                                          <math>\mbox{Wandstärke}= d = 3 \mbox{ mm}</math> 
                                         
                                          <math>\mbox{Innenradius}= r_i = r_a - d = 70 \mbox{ mm}- 3 \mbox{ mm}= 67 \mbox{ mm}</math>
                                         
                                          <math>x = \frac{\mbox{Bausteinlänge}}{2}=\frac{32 \mbox{ mm}}{2}=16 \mbox{ mm}</math>
 
 
Durch Einsetzen erhält man:
 
                                          <math>f(16 \mbox{ mm})=\sqrt{67 \mbox{ mm}^2 - 16 \mbox{ mm}^2} = 65,06 \mbox{ mm}</math>
 
 
Wegen der Steinlänge von 32 mm ergibt dies folgende Berührungspunkte der Legosteinkanten mit dem Innenradius des Fördertopfes:
 
                                          <math>P1(-16\mbox{ mm};65,06\mbox{ mm})</math>      <math>P2(16\mbox{ mm};65,06\mbox{ mm})</math>
                                         
Die Höhe von <math>f(16\mbox{ mm})=f(-16\mbox{ mm})=65,06\mbox{ mm}</math> ist auch gleichzeitig die Distanz zwischen der Legosteinmitte und dem Innenradius des Fördertopfes.
 
Sodass gilt:
                                          <math> \mbox{Bahnbreite.min} = r - f(16\mbox{ mm}) + \mbox{Bausteinbreite} </math>
 
                                          <math> \mbox{Bahnbreite.min} = 67 \mbox{ mm} - 65,01\mbox{ mm}+ 16\mbox{ mm}= 17,94\mbox{ mm}</math>
 
 
Daraufhin kann die Skizze erstellt und die gewünschte Geometrie (hier: 21 mm - 3 mm(geplante Wandstärke) = 18 mm Bahnbreite) konstruiert werden.
 
Anschließend wird als Feature "''Rotationskörper''" ausgewählt und als Rotationsform kann nun die Skizze ausgewählt und
 
als Orientierungskurve die zuvor erstellte Helix gewählt werden.
 
[[Datei:Features_Rotationskörper_skizze_2_als_Roationsform_und_Orientierungskurve_die_Helix_auswählen.png|links|mini|250px|Die Abb.6 zeigt die Vorschau des Rotations-körpers über der ausgewählten "Helix".]]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
'''Schritt.5:''' Erstellen der Topfwand als Rotationskörper
 
Bei diesem Projekt wurde, wie in dem vorherigen Schritt ersichtlich, eine Wandstärke von 3 mm gewählt.
 
[[Datei:Vibrationswendelförderertopfwand.png|links|mini|250px|Abb.7 Stellt die Vorschau der Fördertopfwand als Rotationskörper über der Mittelachse des Kreises dar.]]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
'''Schritt.6:''' "Wegschneiden" der überstehenden Förderbahn.
 
Hierfür muss eine neue Skizze auf der unteren Fläche der Wendelfördererwand erstellt und aus dem Ursprung ein Kreis mit dem Durchmesser des Topfes skizziert werden.
 
Daraufhin wird das Feature "Linear ausgetragener Schnitt" aus der Werkzeugleiste ausgewählt und die gewünschte Länge des Schnittes eingetragen und bestätigt. 
 
[[Datei:Wegschneiden_des_überstehenden_teils.png|links|mini|250px|Die Abb.8 zeigt die Vorschau des Features "Linear ausgetragener Schnitt"]]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
'''Schritt.7''' Konstruktion des Topfbodens
 
Hierzu wurde in einer neuen Skizze die Form des Bodens skizziert, in diesem Fall wurde eine Kegelform gewählt und als Rotationskörper
 
erstellt. Durch die gewählte Geometrie des Bodens werden die Bauteile nach dem Einfüllen in den Topf an den Randbereich, in dem sich
 
die Transportbahn für die Bauteile befindet, transportiert.
 
[[Datei:Feature_rotationskörper.png|links|mini|250px|Abb.9 Zeigt die skizzierte Geometrie als Rotationskörper mit ausgeblendeten Bauteilen.]]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hier finden Sie ein Rohling des Fördertopfes als Referenzbauteil:
 
[[Datei:Rohling.zip]]
----
 
=== Konstruktion der Auslaufbahn ===
 
Für die Konstruktion der Auslaufbahn wurden folgende Punkte beachtet:
 
*Bahnbreite ausreichend für zwei Bögen mit jeweils 90 Grad und unterschiedlichen Radien. Die Berechnung der Bahnbreite wurde äquivalent zur Berechnung der Transportlaufbahnbreite durchgeführt.
*Übergabepunkt an das Förderband in Flucht zur Förderertopfmitte.
 
 
[[Datei:Auslaufbahn.png|links|mini|250px|Abb.10: Zeigt die konstruierte Auslaufbahn. <ref>[[Datei:Fördertopfauslauf.zip]] </ref> ]]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
----
 
=== Podest für den [[Vibrationswendelförderer_mit_PiCo_Regelgerät_NA/B.4/65.3-bi-V1#Funktionsweise_des_Vibrationswendelf.C3.B6rderers | Vibrationswendelförderer]] ===
Um die Übergabehöhe zu erreichen wurde zusätzlich ein Podest, was vorher ebenfalls in CAD konstruiert wurde, aus Pressspannplatten angefertigt. Für eine möglichst flexible Positionierung und
 
Befestigung auf dem Montagetisch zu gewährleisten wurden Langlöcher in die Grundplatte gefräst.
 
[[Datei:Podest.png|links|mini|250px|In der Abb.11 ist das CAD-Modell des verwendeten Podestes dargestellt.<ref>[[Datei:Wendelfördererpodest.zip]] </ref> ]]
 
 
 
 
 
 
 
 


Dieser Artikel ist aus der Kategorie [[:Kategorie:Automatische Legostein-Montieranlage]].


== Inhalt ==
Die Gliederung des Inhalts hängt stark von Ihrem individuellen Projekt ab. Benutzen Sie einen leicht nachvollziehbaren roten Faden und gliedern Sie nach gesundem Menschenverstand!






=== Unterabschnitt ===
# Nutzen Sie Aufzählungen
#* mit verschiedenen Schachtelungen
#* und so weiter
# zweite Ebene
#* mit erneuter Unterebene


=== Konstruktion des Fördertopfes ===


=== Funktionsweise des Vibrationswendelförderes ===
Bauen Sie Bilder ein, am besten mit darin gekennzeichneten Stellen, die Sie dann im Text erklären.
[[Datei:RetroGameStation_HSHL_Messe.jpg|rechts|mini|Beispielbild mit Quelle <ref> Eigenes Foto </ref>]]


=== Tabellen ===
 
Eine tolle Tabelle ist hier dargestellt.
 
 
 
 
 
 
 
 
 
 
 
 
 
=== Konstruierte Solidworks-Dateien ===
{| class="mw-datatable"
{| class="mw-datatable"
! style="font-weight: bold;" | Spalte 1
! style="font-weight: bold;" | Nr.:
! style="font-weight: bold;" | Spalte 2
! style="font-weight: bold;" | Bauteil:
! style="font-weight: bold;" | Spalte 3
! style="font-weight: bold;" | Datenblatt:
|-
|-
| blabla
|1.
| sowieso
|Fördertopfrohling
| sowieso
|[[Datei:Rohling.zip|</ref>[[Datei:Rohling.zip]]</ref>]]
|-
|-
| test
|2.
| sowieso
|Fördertopfauslauf
| test1
|[[Datei:Fördertopfauslauf.zip|</ref>[[Datei:Fördertopfauslauf.zip]]</ref>]]
|-
|3.
|Fördertopf+Auslaufbahn
|[[Datei:Vibrationswendelförderertopf+Auslauf.zip|</ref>[[Datei:Vibrationswendelförderertopf+Auslauf.zip]]</ref>]]
|-
|4.
|Wendelfördererpodest
|[[Datei:Wendelfördererpodest.zip|</ref>[[Datei:Wendelfördererpodest.zip]]</ref>]]
|-
|5.
|Legostein-Dummy
|[[Datei:Legostein_Dummy.zip|</ref>[[Datei:Legostein_Dummy.zip]]</ref>]]
|}
|}
----


=== Formatierung ===
=== Lagerichtige Orientierung der Lego-Bausteine ===
Nutzen Sie zur Formatierung Beispiele, z. B. aus dem weltbekannten Wikipedia selbst (das ist die gleiche Syntax!) oder anderer Hilfeseiten wie z. B. <ref> [http://meta.wikimedia.org/wiki/Help:Editing/de Hilfeseite des Wikimedia-Projekts] </ref>.


== Zusammenfassung ==
Wie bereits in der Aufgabenstellung beschrieben, sollten die Legosteine lagerichtig orientiert werden. Um diese Orientierung der Legosteine realisieren zu können wurden hierzu, die in Abb.12 und 13 dargestellten, zwei Schikanen an den Fördertopf angebracht.
Was ist das Ergbnis?
Das Ergebnis dieses Artikels ist eine Vorlage, mit der Nutzer des Wikis schnell und leicht eigene Artikel verwirklichen können. Diese Vorlage ist Bestandteil der Anleitungen aus [http://193.175.248.171/wiki/index.php/Kategorie:HowTo den How-To's].


Für die Anfertigung der Schikanen wurden zwei Blechstreifen, mit den Abmessungen 50 mm x 10 mm, aus einem Zinkblech mit einer Stärke von 0,6 mm ausgeschnitten und anschließend umgeformt. Mit einem Rundschleifer und mit Zangen wurden die Schikanen anschließend so weit bearbeitet, bis eine zufriedenstellende Aussortierung gewährleistet werden konnte.
Die Schikane Nr.1 sortiert hochkant bzw. auf der Seite liegende Legosteine aus. Anschließend werden über die Schikane Nr.2 die Legosteine mit "Noppen" nach unten aussortiert.
[[Datei:Schikane_Nr.1.png|links|mini|650px|links| Abb.12 zeigt die Schikane Nr.1 und veranschaulicht die Funktionsweise.]][[Datei:Schikane_Nr.2.PNG|mini|650px|rechts| In Abb.13 ist die Schikane Nr.2 dargestellt.]]
----
== Ansteuerung des [[Vibrationswendelförderer_mit_PiCo_Regelgerät_NA/B.4/65.3-bi-V1#Funktionsweise_des_Vibrationswendelf.C3.B6rderers | Vibrationswendelförderers]]  bei besetztem Förderband ==
[[Datei:Steuereingang_Pico_Regelgerät.PNG|300px|thumb|Abb.14 Steuereingang PiCo Regelgerät]]
Für die Ansteuerung des [[Vibrationswendelförderer_mit_PiCo_Regelgerät_NA/B.4/65.3-bi-V1#Funktionsweise_des_Vibrationswendelf.C3.B6rderers | Vibrationswendelförderers]] wurde das Regelgerät über den Steuereingang (Siehe Abb.14) mit der "M12 Sensorleitung PVC 5-polig Stift gerade" an die [[Phoenix_Contact_AXC_Trainer_1050_PN | SPS]] angeschlossen.
Die Gruppe "[[Steuerung der automatischen Legostein-Montieranlage]]" übernahm die Programmierung.
Hierbei schaltet die [[Phoenix_Contact_AXC_Trainer_1050_PN | SPS]] den [[Vibrationswendelförderer_mit_PiCo_Regelgerät_NA/B.4/65.3-bi-V1#Aufbau_des_Vibrationsf.C3.B6rderers | Vibrationsförderer]] ein, wenn sich kein Lego Stein im Messbereich des [[Optoelektronischer_Sensor_CY-100 | Reflektion-Lichttasters]] befindet.
Die nachfolgende Abbildung zeigt die Anschlussbelegung des Steuereingangs:
[[Datei:Anschlussbelegung_Steuereingang_PiCo_Regelgerät.PNG|mini|500px|links|Abb.15: Anschlussbelegung des Steuereingangs des PiCo Regelgerätes]]
----
== Herausforderungen und Lösung ==
=== Vibrationsverlust durch den neuen Fördertopf ===
Eine der größten Herausforderungen dieses Projektes war es, das der Kunststoffwerkstoff "PLA" aus dem der Fördertopf gefertigt wurde die vom [[Vibrationswendelförderer_mit_PiCo_Regelgerät_NA/B.4/65.3-bi-V1#Aufbau_des_Vibrationsf.C3.B6rderers | Vibrationswendelförderer]] erzeugte Schwingung stark dämpfte.
*Um diese Herausforderung zu lösen, wurden wie in dem Artikel: "[[Vibrationswendelförderer_mit_PiCo_Regelgerät_NA/B.4/65.3-bi-V1#M.C3.B6gliche_.C3.84nderungen_am_Vibrationswendelf.C3.B6rderer | Vibrationswendelförderer mit PiCo Regelgerät NA/B.4/65.3-bi-V1]]" erläutert, zwei Fachfedern entfernt und die Amplitude durch Änderung des Luftspalts zwischen Förderrinne und Elektromagnet verstärkt, da durch konnte die Vibration so weit verstärkt werden, dass die Legosteine eine Vorwärtsbewegung erfuhren.
=== Falsche Förderrichtung ===
Durch das Verstärken der Vibration fiel auf, das die Legosteine in die falsche Richtung gefördert werden.
*Die Umkehrung der Förderrichtung konnte durch die Einbaurichtung der Flachfedern wie in dem Artikel: "[[Vibrationswendelförderer_mit_PiCo_Regelgerät_NA/B.4/65.3-bi-V1#M.C3.B6gliche_.C3.84nderungen_am_Vibrationswendelf.C3.B6rderer | Vibrationswendelförderer mit PiCo Regelgerät NA/B.4/65.3-bi-V1]]" beschrieben, geändert werden.
=== Montage der Auslaufbahn ===
[[Datei:Auslauf_Montage.PNG|400px|thumb|Abb.16 Montage der Auslaufbahn]]
Der Auslauf wurde ursprünglich so Konstruiert, dass dieser an den Ausgang des Fördertopfes geschraubt wird.
Beim ersten Versuch fiel auf, dass sich die Vibration durch die feste Verschraubung an das Ende der Auslaufbahn verlagerte, sodass die Legosteine nicht mehr gefördert wurden.
* Um diese Herausforderung zu lösen, wurde die Auslaufbahn mit einer Dämpfungslage vor den Fördertopfausgang angebracht und im Übergabebereich an das Förderband in ein U-Profil eingespannt. (Siehe Abb.16)
----
== Schnittstellen zu anderen Projektteams ==
*[[Förderung der Legosteine und Rücktransport in den Vibrationswendelförderer]]
*[[Steuerung der automatischen Legostein-Montieranlage]]
== Fazit ==
Im Verlauf dieses Projektes konnte gezeigt werden, dass mit Hilfe eines solchen Systems je nach Geometrie des Fördertopfes und der angebundenen Komponenten unterschiedlichste Bauteile gespeichert, gefördert und vereinzelt werden können.
Der Transport der Bauteile konnte in einer lagerichtigen Position sowie der Übergabe an das Förderband erfolgreich, mit den hier vorgestellten Komponenten, realisiert werden.


== Ausblick ==
== Ausblick ==
Was kann/muss noch verbessert werden?


'''Mögliche Verbesserungen:'''


== Literaturverzeichnis ==
'''1.''' Über eine Optimierung der Fördertopfoberfläche, insbesondere der Förderbahn und Topfwand, könnte eine Minimierung der Verkantungsmöglichkeiten realisiert werden.
 
'''Lösungsmöglichkeiten:''' 3D-Druck engmaschiger anfertigen mit anschließendem Schleifen der Oberflächen, nachträgliche Oberflächenbeschichtung durch z.B. eine Lackierung, Herstellung der Bauteile über ein Herstellungsverfahren das eine bessere Oberflächengüte verspricht wie z.B. Feingießen, Fräsen...etc.
 
 
'''2.''' Durch eine weitere Optimierung der Schikanenkonstruktion könnte eine effektivere Sortierung erzielt werden.
 
'''Lösungsmöglichkeiten:''' Konstruktion der Schikanen als 3D-Bauteile mit anschließender Simulation -> Optimierung bereits vor der Ausführung
 
 
'''3.''' Um die zu fördernde Menge der Bausteine zu erhöhen und den Nachtfülltakt zu minimieren wäre eine Steigerung des Fördertopfvolumens möglich. Dies kann über eine Verlängerung der Förderlaufbahn und somit der Fördertopfhöhe realisiert werden.
 
'''Lösungsmöglichkeit:''' Erhöhung der Umdrehungsanzahl oder der Steigunghöhe der konstruierten "Spirale/Helix" - Windungen. (siehe [[Zuführung_der_Legosteine_mittels_Vibrationswendelförderer#3D-Modellierung_des_F.C3.B6rdertopfes | Schritt 3: Konstruktion der Helix]])
 
 
'''4.''' Die Verbindungstelle zwischen Fördertopf und Auslauf könnte zusätzlich modifiziert werden.
 
'''Lösungsmöglichkeit:''' Einsatz einer losen Lagerung zwischen Fördertopf und Fördertopfauslauf.
 
== Dateiverzeichnis ==
<references />
<references />
'''Hauptartikel:'''[[utomatische_Legostein-Montieranlage Automatische | Legostein-Montieranlage]]

Aktuelle Version vom 12. September 2021, 10:03 Uhr

Hauptartikel: Automatische Legostein-Montieranlage


Autor: Daniel Freitag, Markus Skrobol

Betreuer: Prof. Dr. Mirek Göbel

Abb.1 Anlage Vibrationswendelförderer




Einleitung

Dieser Artikel entstand im Rahmen des Produktionstechnik Praktikums im 7 Semester des Studiengangs Mechatronik. Ziel des Beitrags ist es, eine nachhaltige Dokumentation zu schaffen, welche das weitere Arbeiten am Projekt ermöglicht und die erreichten Ergebnisse festhält.[[Datei:Funktionsplan_Abschnitt_Gruppe.1.png|thumb|mini|250px|Abb.2 Zeigt den für diese Gruppe relevanten Ausschnitt des Funktionsablaufplans9].

Dieser Artikel handelt über ein Teilprojekt des Hauptartikels:" Automatische Legostein-Montieranlage". Das Teilprojekt umfasste, wie in Abb.2 zusehen, die Punkte eins bis sechs des dargestellten Funktionsablaufplans im Hauptartikelabschnitt "Strukturierung der Aufgabe".










Aufgabestellung

Die Aufgabe dieser Projektgruppe war es, unsortierte Legosteine lagerichtig mit"Noppen" nach oben & lange Seite nach außen zu orientieren, zu transportieren und diese vereinzelt an die Gruppe "Förderung der Legosteine und Rücktransport in den Vibrationswendelförderer" zu übergeben.

Hierzu musste ein neuer Fördertopf entworfen und mittels 3D-Druckverfahren hergestellt werden. Des Weiter sollte die Abschaltung des Vibrationswendelförderers bei besetztem Förderband realisiert werden.

Vorbereitungen

Zu Beginn des Projektes mussten folgende Vorbereitungen getroffen werden:


Verwendete Bauteile

Nr.: Artikel: Artikelbeschreibung: Menge in [Stück] Datenblatt
1. Vibrationswendelförderer & PiCo Regelgerät Zum Befördern und ordnen der Legosteine 1 Datei:PiCo Regelgerät.PDF
2. M12 Sensorleitung Zum Anschluss des Vibrationswendelförderers an die SPS 1 Datei:M12 Sensorleitung PVC 5-polig Stift gerade.pdf
3. Reflektion-Lichttaster Zur Ermittlung ob das Förderband besetzt ist 1 Datei:Optoelektronischer Sensor CY-100.pdf

Konstruktion

Anforderungen an die Konstruktion

Es wurden folgende Maße und Bedingungen, für die Konstruktion des Förderertopfes, festgelegt:

  • maximale Höhe des Fördertopfrandbereiches: 230 mm
  • Übergabehöhe der Auslaufbahn an das Förderband: 205 mm
  • maximaler Durchmesser: 150 mm
  • Auslaufposition der Lego-Bausteine: mittig, da die Rückführung der Bausteine über eine Linearachse realisiert werden sollte.
  • Überstehende Bauteile sollten, wenn möglich mit 45° Schrägen unterstützt werden, um den 3D-Druck des Bauteils zu verkürzen.

Herausforderungen an die Konstruktion:

  • Konstruktion des Topfes von innen nach außen.
  • Durchführung einiger Änderungen, durch den Ausfall eines 3D-Druckers auf dem die ursprüngliche CAD-Datei ausgelegt wurde.
  • Bahnbreitenauslegung in der Förderbahn innerhalb des Fördertopfes und der Auslaufbahn.

3D-Modellierung des Fördertopfes

An dieser Stelle sollen die wichtigsten Schritte zur Anfertigung des, in diesem Projekt verwendeten, Topfrohlings und der Auslaufbahn beschrieben werden. Die Bauteile wurden hierzu mit der Software: Solidworks in der Version:2016 konstruiert.

Schritt.1: Neue Skizze auf einer beliebigen Ebene erstellen.



Schritt.2: Kreis aus dem Ursprung der Skizze zeichnen und mit dem gewünschten Durchmesser des Topfes bemaßen.

Abb.3 Zeigt wie ein Kreis aus dem Koordinatenursprung skizziert wird.











Schritt.3: Konstruktion der Helix

In die Feature Auswahl wechseln und anschließend rechts in der Werkzeugleiste "Kurven" daraus den Reiter "Helix und Spirale" auswählen.

Abb.4 Zeigt den auszuwählenden Reiter "Helix & Spirale" aus dem Feature "Kurven"










In diesem Feature können nun unterschiedliche Einstellungen vorgenommen werde.

In Abb.5 ist die Kurve der Helix dargestellt.










Für die Konstruktion des verwendeten Fördertopfes wurden folgende Einstellungen verwendet:

  • Steigungshöhe: 35 mm
  • Umdrehungen: 1 (Skalierung der Höhe und des Auslaufübergabewinkels)
  • Ausgangswinkel: 90 Grad (erleichtert die nachfolgenden Konstruktionsschritte)
  • Verjüngung der Spirale: 0 Grad (Einfacher für den 3D-Druck)


Schritt.4: Konstruktion der Transportlaufbahn für die Lego-Bausteine mit Verknüpfung an die "Helix/Spirale"

Für diesen Schritt wurde die Förderbahnbreite mit folgender Kreisfunktion berechnet:


                                         


Benötigte Parameter für die Berechnung:

  • Radius
  • halbe Bauteillänge des Bauteils.

In diesem Fall:

                                                         
                                         
                                            
                                         
                                         
                                         
                                         


Durch Einsetzen erhält man:

                                         


Wegen der Steinlänge von 32 mm ergibt dies folgende Berührungspunkte der Legosteinkanten mit dem Innenradius des Fördertopfes:

                                               
                                         

Die Höhe von ist auch gleichzeitig die Distanz zwischen der Legosteinmitte und dem Innenradius des Fördertopfes.

Sodass gilt:

                                          
                                         


Daraufhin kann die Skizze erstellt und die gewünschte Geometrie (hier: 21 mm - 3 mm(geplante Wandstärke) = 18 mm Bahnbreite) konstruiert werden.

Anschließend wird als Feature "Rotationskörper" ausgewählt und als Rotationsform kann nun die Skizze ausgewählt und

als Orientierungskurve die zuvor erstellte Helix gewählt werden.

Die Abb.6 zeigt die Vorschau des Rotations-körpers über der ausgewählten "Helix".











Schritt.5: Erstellen der Topfwand als Rotationskörper

Bei diesem Projekt wurde, wie in dem vorherigen Schritt ersichtlich, eine Wandstärke von 3 mm gewählt.

Abb.7 Stellt die Vorschau der Fördertopfwand als Rotationskörper über der Mittelachse des Kreises dar.











Schritt.6: "Wegschneiden" der überstehenden Förderbahn.

Hierfür muss eine neue Skizze auf der unteren Fläche der Wendelfördererwand erstellt und aus dem Ursprung ein Kreis mit dem Durchmesser des Topfes skizziert werden.

Daraufhin wird das Feature "Linear ausgetragener Schnitt" aus der Werkzeugleiste ausgewählt und die gewünschte Länge des Schnittes eingetragen und bestätigt.

Die Abb.8 zeigt die Vorschau des Features "Linear ausgetragener Schnitt"











Schritt.7 Konstruktion des Topfbodens

Hierzu wurde in einer neuen Skizze die Form des Bodens skizziert, in diesem Fall wurde eine Kegelform gewählt und als Rotationskörper

erstellt. Durch die gewählte Geometrie des Bodens werden die Bauteile nach dem Einfüllen in den Topf an den Randbereich, in dem sich

die Transportbahn für die Bauteile befindet, transportiert.

Abb.9 Zeigt die skizzierte Geometrie als Rotationskörper mit ausgeblendeten Bauteilen.











Hier finden Sie ein Rohling des Fördertopfes als Referenzbauteil:

Datei:Rohling.zip


Konstruktion der Auslaufbahn

Für die Konstruktion der Auslaufbahn wurden folgende Punkte beachtet:

  • Bahnbreite ausreichend für zwei Bögen mit jeweils 90 Grad und unterschiedlichen Radien. Die Berechnung der Bahnbreite wurde äquivalent zur Berechnung der Transportlaufbahnbreite durchgeführt.
  • Übergabepunkt an das Förderband in Flucht zur Förderertopfmitte.


Abb.10: Zeigt die konstruierte Auslaufbahn. [4]












Podest für den Vibrationswendelförderer

Um die Übergabehöhe zu erreichen wurde zusätzlich ein Podest, was vorher ebenfalls in CAD konstruiert wurde, aus Pressspannplatten angefertigt. Für eine möglichst flexible Positionierung und

Befestigung auf dem Montagetisch zu gewährleisten wurden Langlöcher in die Grundplatte gefräst.

In der Abb.11 ist das CAD-Modell des verwendeten Podestes dargestellt.[5]
















Konstruierte Solidworks-Dateien

Nr.: Bauteil: Datenblatt:
1. Fördertopfrohling [[Datei:Rohling.zip|</ref>Datei:Rohling.zip</ref>]]
2. Fördertopfauslauf Datei:Fördertopfauslauf.zip
3. Fördertopf+Auslaufbahn Datei:Vibrationswendelförderertopf+Auslauf.zip
4. Wendelfördererpodest Datei:Wendelfördererpodest.zip
5. Legostein-Dummy Datei:Legostein Dummy.zip

Lagerichtige Orientierung der Lego-Bausteine

Wie bereits in der Aufgabenstellung beschrieben, sollten die Legosteine lagerichtig orientiert werden. Um diese Orientierung der Legosteine realisieren zu können wurden hierzu, die in Abb.12 und 13 dargestellten, zwei Schikanen an den Fördertopf angebracht.

Für die Anfertigung der Schikanen wurden zwei Blechstreifen, mit den Abmessungen 50 mm x 10 mm, aus einem Zinkblech mit einer Stärke von 0,6 mm ausgeschnitten und anschließend umgeformt. Mit einem Rundschleifer und mit Zangen wurden die Schikanen anschließend so weit bearbeitet, bis eine zufriedenstellende Aussortierung gewährleistet werden konnte.

Die Schikane Nr.1 sortiert hochkant bzw. auf der Seite liegende Legosteine aus. Anschließend werden über die Schikane Nr.2 die Legosteine mit "Noppen" nach unten aussortiert.

Abb.12 zeigt die Schikane Nr.1 und veranschaulicht die Funktionsweise.
In Abb.13 ist die Schikane Nr.2 dargestellt.






















Ansteuerung des Vibrationswendelförderers bei besetztem Förderband

Abb.14 Steuereingang PiCo Regelgerät

Für die Ansteuerung des Vibrationswendelförderers wurde das Regelgerät über den Steuereingang (Siehe Abb.14) mit der "M12 Sensorleitung PVC 5-polig Stift gerade" an die SPS angeschlossen.

Die Gruppe "Steuerung der automatischen Legostein-Montieranlage" übernahm die Programmierung. Hierbei schaltet die SPS den Vibrationsförderer ein, wenn sich kein Lego Stein im Messbereich des Reflektion-Lichttasters befindet.


Die nachfolgende Abbildung zeigt die Anschlussbelegung des Steuereingangs:

Abb.15: Anschlussbelegung des Steuereingangs des PiCo Regelgerätes












Herausforderungen und Lösung

Vibrationsverlust durch den neuen Fördertopf

Eine der größten Herausforderungen dieses Projektes war es, das der Kunststoffwerkstoff "PLA" aus dem der Fördertopf gefertigt wurde die vom Vibrationswendelförderer erzeugte Schwingung stark dämpfte.

  • Um diese Herausforderung zu lösen, wurden wie in dem Artikel: " Vibrationswendelförderer mit PiCo Regelgerät NA/B.4/65.3-bi-V1" erläutert, zwei Fachfedern entfernt und die Amplitude durch Änderung des Luftspalts zwischen Förderrinne und Elektromagnet verstärkt, da durch konnte die Vibration so weit verstärkt werden, dass die Legosteine eine Vorwärtsbewegung erfuhren.


Falsche Förderrichtung

Durch das Verstärken der Vibration fiel auf, das die Legosteine in die falsche Richtung gefördert werden.

Montage der Auslaufbahn

Abb.16 Montage der Auslaufbahn

Der Auslauf wurde ursprünglich so Konstruiert, dass dieser an den Ausgang des Fördertopfes geschraubt wird. Beim ersten Versuch fiel auf, dass sich die Vibration durch die feste Verschraubung an das Ende der Auslaufbahn verlagerte, sodass die Legosteine nicht mehr gefördert wurden.

  • Um diese Herausforderung zu lösen, wurde die Auslaufbahn mit einer Dämpfungslage vor den Fördertopfausgang angebracht und im Übergabebereich an das Förderband in ein U-Profil eingespannt. (Siehe Abb.16)














Schnittstellen zu anderen Projektteams

Fazit

Im Verlauf dieses Projektes konnte gezeigt werden, dass mit Hilfe eines solchen Systems je nach Geometrie des Fördertopfes und der angebundenen Komponenten unterschiedlichste Bauteile gespeichert, gefördert und vereinzelt werden können.

Der Transport der Bauteile konnte in einer lagerichtigen Position sowie der Übergabe an das Förderband erfolgreich, mit den hier vorgestellten Komponenten, realisiert werden.

Ausblick

Mögliche Verbesserungen:

1. Über eine Optimierung der Fördertopfoberfläche, insbesondere der Förderbahn und Topfwand, könnte eine Minimierung der Verkantungsmöglichkeiten realisiert werden.

Lösungsmöglichkeiten: 3D-Druck engmaschiger anfertigen mit anschließendem Schleifen der Oberflächen, nachträgliche Oberflächenbeschichtung durch z.B. eine Lackierung, Herstellung der Bauteile über ein Herstellungsverfahren das eine bessere Oberflächengüte verspricht wie z.B. Feingießen, Fräsen...etc.


2. Durch eine weitere Optimierung der Schikanenkonstruktion könnte eine effektivere Sortierung erzielt werden.

Lösungsmöglichkeiten: Konstruktion der Schikanen als 3D-Bauteile mit anschließender Simulation -> Optimierung bereits vor der Ausführung


3. Um die zu fördernde Menge der Bausteine zu erhöhen und den Nachtfülltakt zu minimieren wäre eine Steigerung des Fördertopfvolumens möglich. Dies kann über eine Verlängerung der Förderlaufbahn und somit der Fördertopfhöhe realisiert werden.

Lösungsmöglichkeit: Erhöhung der Umdrehungsanzahl oder der Steigunghöhe der konstruierten "Spirale/Helix" - Windungen. (siehe Schritt 3: Konstruktion der Helix)


4. Die Verbindungstelle zwischen Fördertopf und Auslauf könnte zusätzlich modifiziert werden.

Lösungsmöglichkeit: Einsatz einer losen Lagerung zwischen Fördertopf und Fördertopfauslauf.

Dateiverzeichnis


Hauptartikel: Legostein-Montieranlage