Zuführung der Legosteine mittels Vibrationswendelförderer: Unterschied zwischen den Versionen

Aus HSHL Mechatronik
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
 
(179 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
'''Hauptartikel:'''[http://193.175.248.52/wiki/index.php/Automatische_Legostein-Montieranlage Automatische Legostein-Montieranlage]
'''Hauptartikel:'''[[Automatische_Legostein-Montieranlage | Automatische Legostein-Montieranlage]]


IN BEARBEITUNG!!!


'''Autor:''' [[Benutzer:Daniel_Freitag|Daniel Freitag]], [[Benutzer:Markus_Skrobol|Markus Skrobol]]
'''Autor:''' [[Benutzer:Daniel_Freitag|Daniel Freitag]], [[Benutzer:Markus_Skrobol|Markus Skrobol]]


'''Betreuer:'''[[Benutzer:Mirekgoebel| Prof. Dr. Mirek Göbel]]
'''Betreuer:'''[[Benutzer:Mirekgoebel| Prof. Dr. Mirek Göbel]]
[[Datei:Vibrationswendelförderer_Anlage.PNG|thumb|700px|Abb.1 Anlage Vibrationswendelförderer]]


== Einleitung ==
== Einleitung ==
Dieser Artikel entstand im Rahmen des Produktionstechnik Praktikum im 7 Semester des Studiengangs [http://www.hshl.de/mechatronik-bachelorstudiengang/ Mechatronik].
Dieser Artikel entstand im Rahmen des Produktionstechnik Praktikums im 7 Semester des Studiengangs [http://www.hshl.de/mechatronik-bachelorstudiengang/ Mechatronik]. Ziel des Beitrags ist es, eine nachhaltige Dokumentation zu schaffen, welche das weitere Arbeiten am Projekt ermöglicht und die erreichten Ergebnisse festhält.[[Datei:Funktionsplan_Abschnitt_Gruppe.1.png|thumb|mini|250px|Abb.2 Zeigt den für diese Gruppe relevanten Ausschnitt des [[Automatische_Legostein-Montieranlage#Strukturierung_der_Aufgabedargestellten | Funktionsablaufplans9].]]
Ziel des Beitrags ist es, eine nachhaltige Dokumentation zu schaffen, welche die Ergebnisse festhält und das weitere Arbeiten am Projekt ermöglicht.
 
Dieser Artikel handelt über ein Teilprojekt des '''Hauptartikels:'''"[[Automatische_Legostein-Montieranlage | Automatische Legostein-Montieranlage]]". Das Teilprojekt umfasste, wie in Abb.2 zusehen, die Punkte eins bis sechs des [[Automatische_Legostein-Montieranlage#Strukturierung_der_Aufgabe | dargestellten Funktionsablaufplans]] im Hauptartikelabschnitt '''"Strukturierung der Aufgabe"'''.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




Dieser Artikel ist aus dem '''Hauptartikel:'''"[http://193.175.248.52/wiki/index.php/Automatische_Legostein-Montieranlage Automatische Legostein-Montieranlage]".


== Aufgabestellung ==
== Aufgabestellung ==
Die Aufgabe dieser Projektgruppe war es, Lego Steine zu vereinzeln und lagerichtig orientiert ("Noppen" nach oben & lange Seite nach außen) an die Gruppe "[[Förderung der Legosteine und Rücktransport in den Vibrationswendelförderer]]" zu übergeben.
Die Aufgabe dieser Projektgruppe war es, unsortierte Legosteine lagerichtig mit"Noppen" nach oben & lange Seite nach außen zu orientieren, zu transportieren und diese vereinzelt an die Gruppe "[[Förderung der Legosteine und Rücktransport in den Vibrationswendelförderer]]" zu übergeben.


Hierzu musste ein neuer Fördertopf entworfen werden und mittels 3D-Druckverfahren hergestellt werden.
Hierzu musste ein neuer Fördertopf entworfen und mittels 3D-Druckverfahren hergestellt werden. Des Weiter sollte die Abschaltung des [[Vibrationswendelförderer_mit_PiCo_Regelgerät_NA/B.4/65.3-bi-V1#Funktionsweise_des_Vibrationswendelf.C3.B6rderers | Vibrationswendelförderers]] bei
 
besetztem Förderband realisiert werden.
Des Weiter sollte die Abschaltung des [http://193.175.248.52/wiki/index.php/Vibrationswendelförderer_mit_PiCo_Regelgerät_NA/B.4/65.3-bi-V1#Funktionsweise_des_Vibrationswendelf.C3.B6rderers Vibrationswendelförderers] bei besetztem Förderband realisiert werden.


== Vorbereitungen ==
== Vorbereitungen ==
Zeile 25: Zeile 45:
Zu Beginn des Projektes mussten folgende Vorbereitungen getroffen werden:
Zu Beginn des Projektes mussten folgende Vorbereitungen getroffen werden:


* Absprache der Positionierung und Bauhöhe des [http://193.175.248.52/wiki/index.php/Vibrationswendelförderer_mit_PiCo_Regelgerät_NA/B.4/65.3-bi-V1#PiCo_Regelger.C3.A4t_NA.2FB.4.2F65.3-bi-V1 Vibrationswendelförderers] mit der Projektgruppe "[[Förderung der Legosteine und Rücktransport in den Vibrationswendelförderer]]".
* Absprache der Positionierung und Bauhöhe des [[Vibrationswendelförderer_mit_PiCo_Regelgerät_NA/B.4/65.3-bi-V1#PiCo_Regelger.C3.A4t_NA.2FB.4.2F65.3-bi-V1 | Vibrationswendelförderers]] mit der Projektgruppe "[[Förderung der Legosteine und Rücktransport in den Vibrationswendelförderer]]".
* Festlegung der benötigten Bauteile.
* Festlegung der benötigten Bauteile.
* Absprache der benötigen Ein -und Ausgänge der [http://193.175.248.52/wiki/index.php/Phoenix_Contact_AXC_Trainer_1050_PN SPS] mit der Projektgruppe "[[Steuerung der automatischen Legostein-Montieranlage]]".
* Der Bedarf an Ein- und Ausgängen für die [[Phoenix_Contact_AXC_Trainer_1050_PN | SPS]] musste mit der Projektgruppe "[[Steuerung der automatischen Legostein-Montieranlage]]" abgestimmt werden.
* Anforderungen an die Konstruktion des neuen Fördertopfes festlegen.
* Anforderungen an die Konstruktion des neuen Fördertopfes festlegen.


----
----
=== Verwendete Bauteile ===
== Verwendete Bauteile ==


{| class="mw-datatable"
{| class="mw-datatable"
Zeile 41: Zeile 61:
|-
|-
| 1.
| 1.
| [http://193.175.248.52/wiki/index.php/Vibrationswendelförderer_mit_PiCo_Regelgerät_NA/B.4/65.3-bi-V1#PiCo_Regelger.C3.A4t_NA.2FB.4.2F65.3-bi-V1 Vibrationswendelförderer & PiCo Regelgerät]
| [[Vibrationswendelförderer_mit_PiCo_Regelgerät_NA/B.4/65.3-bi-V1#PiCo_Regelger.C3.A4t_NA.2FB.4.2F65.3-bi-V1 | Vibrationswendelförderer & PiCo Regelgerät]]
| Zum Befördern und ordnen der Legosteine
| Zum Befördern und ordnen der Legosteine
| 1
| 1
Zeile 53: Zeile 73:
|-
|-
| 3.
| 3.
| [http://193.175.248.52/wiki/index.php/Optoelektronischer_Sensor_CY-100 Reflektion-Lichttaster]
| [[Optoelektronischer_Sensor_CY-100 | Reflektion-Lichttaster]]
| Zur Ermittlung ob das Förderband besetzt ist
| Zur Ermittlung ob das Förderband besetzt ist
| 1
| 1
Zeile 62: Zeile 82:


=== Anforderungen an die Konstruktion ===
=== Anforderungen an die Konstruktion ===
'''Es wurden folgende Maße und Bedingungen, für die Konstruktion des Vibrationswendelförderertopfes, festgelegt:'''
'''Es wurden folgende Maße und Bedingungen, für die Konstruktion des Förderertopfes, festgelegt:'''


*maximale Höhe des Fördertopfrandbereiches: 230 mm
*maximale Höhe des Fördertopfrandbereiches: 230 mm
Zeile 82: Zeile 102:
*Bahnbreitenauslegung in der Förderbahn innerhalb des Fördertopfes und der Auslaufbahn.
*Bahnbreitenauslegung in der Förderbahn innerhalb des Fördertopfes und der Auslaufbahn.


An dieser Stelle sollen die wichtigsten Schritte zur Anfertigung des Topfrohlings und der Auslaufbahn beschrieben werden.
----
----


=== 3D-Modellierung des Fördertopfes ===
=== 3D-Modellierung des Fördertopfes ===
An dieser Stelle sollen die wichtigsten Schritte zur Anfertigung des, in diesem Projekt verwendeten, Topfrohlings und der Auslaufbahn beschrieben werden. Die Bauteile wurden hierzu mit der '''Software: Solidworks''' in der '''Version:2016''' konstruiert.
'''Schritt.1:''' Neue Skizze auf einer beliebigen Ebene erstellen.
'''Schritt.1:''' Neue Skizze auf einer beliebigen Ebene erstellen.




'''Schritt.2:''' Kreis aus dem Ursprung der Skizze zeichnen und mit dem gewünschten Durchmesser des Topfes bemaßen.
'''Schritt.2:''' Kreis aus dem Ursprung der Skizze zeichnen und mit dem gewünschten Durchmesser des Topfes bemaßen.


[[Datei:In_den_Koordinatenursprung_mit_der_linken_maustaste_klicken.png|links|mini|250px|Abb.1 Zeigt wie ein Kreis aus dem Koordinatenursprung skizziert wird.]]
[[Datei:In_den_Koordinatenursprung_mit_der_linken_maustaste_klicken.png|links|mini|250px|Abb.3 Zeigt wie ein Kreis aus dem Koordinatenursprung skizziert wird.]]




Zeile 116: Zeile 140:
In die Feature Auswahl wechseln und anschließend rechts in der Werkzeugleiste "Kurven" daraus den Reiter "Helix und Spirale" auswählen.
In die Feature Auswahl wechseln und anschließend rechts in der Werkzeugleiste "Kurven" daraus den Reiter "Helix und Spirale" auswählen.


[[Datei:Rechts_in_der_Werkzeugleiste_Kurven_und_Spiralhelix_auswählen.png|links|mini|250px|Abb.2 Zeigt den auszuwählenden Reiter "Helix & Spirale" aus dem Feature "Kurven"]]
[[Datei:Rechts_in_der_Werkzeugleiste_Kurven_und_Spiralhelix_auswählen.png|links|mini|250px|Abb.4 Zeigt den auszuwählenden Reiter "Helix & Spirale" aus dem Feature "Kurven"]]




Zeile 137: Zeile 161:
In diesem Feature können nun unterschiedliche Einstellungen vorgenommen werde.
In diesem Feature können nun unterschiedliche Einstellungen vorgenommen werde.


[[Datei:Helix.png|links|mini|250px|In Abb.3 ist die Kurve der Helix dargestellt.]]
[[Datei:Helix.png|links|mini|250px|In Abb.5 ist die Kurve der Helix dargestellt.]]




Zeile 156: Zeile 180:




Für die Konstruktion des vorhandenen Topfes wurden folgende Einstellungen verwendet:
Für die Konstruktion des verwendeten Fördertopfes wurden folgende Einstellungen verwendet:


*Steigungshöhe: 35 mm
*Steigungshöhe: 35 mm
Zeile 172: Zeile 196:




                                           <math>f(x)=sqrt((r^2)-(x^2))</math>
                                           <math>f(x)=\sqrt{r^2-x^2}</math>




Zeile 182: Zeile 206:


In diesem Fall:
In diesem Fall:
                                          <math>\mbox{Topfaussenradius}= r_a = 70\mbox{ mm} </math>               
                                         
                                          <math>\mbox{Wandstärke}= d = 3 \mbox{ mm}</math> 
                                         
                                          <math>\mbox{Innenradius}= r_i = r_a - d = 70 \mbox{ mm}- 3 \mbox{ mm}= 67 \mbox{ mm}</math>
                                         
                                          <math>x = \frac{\mbox{Bausteinlänge}}{2}=\frac{32 \mbox{ mm}}{2}=16 \mbox{ mm}</math>


                                          <math>ra = Topfaussenradius = 70 mm</math>
                                          <math>d = Wandstaerke = 3 mm</math> 
                                          <math>ri = Innenradius = ra - d</math>
                                          <math>ri = 70 mm - 3 mm = 67 mm</math>
                                          <math>x = Bausteinlaenge/2</math>


                                          <math>x = 32 mm / 2 = 16 mm</math>
Durch Einsetzen erhält man:


                                          <math>f(16 \mbox{ mm})=\sqrt{67 \mbox{ mm}^2 - 16 \mbox{ mm}^2} = 65,06 \mbox{ mm}</math>


Durch das Einsetzen erhält man einen Berührungspunkt einer Bauteilkante am inneren Radius des Topfes.


Wegen der Steinlänge von 32 mm ergibt dies folgende Berührungspunkte der Legosteinkanten mit dem Innenradius des Fördertopfes:


                                           <math>f(16)=sqrt((67mm^2)-(16mm^2)) = 65,06 mm </math>
                                           <math>P1(-16\mbox{ mm};65,06\mbox{ mm})</math>      <math>P2(16\mbox{ mm};65,06\mbox{ mm})</math>
                                            
                                            
Die Höhe <math>f(16)</math> ist gleichzeitig auch die Distanz zwischen Baustein und dem 67 mm Radius.
Die Höhe von <math>f(16\mbox{ mm})=f(-16\mbox{ mm})=65,06\mbox{ mm}</math> ist auch gleichzeitig die Distanz zwischen der Legosteinmitte und dem Innenradius des Fördertopfes.


Sodass gilt:
Sodass gilt:
                                          <math> \mbox{Bahnbreite.min} = r - f(16\mbox{ mm}) + \mbox{Bausteinbreite} </math>


                                           <math>Bahnbreite.min = r - f(16) + Bausteinbreite </math>
                                           <math> \mbox{Bahnbreite.min} = 67 \mbox{ mm} - 65,01\mbox{ mm}+ 16\mbox{ mm}= 17,94\mbox{ mm}</math>
 
                                          <math> Bahnbreite.min = 67 mm - 65,01 mm + 16 mm = 17,94 mm </math>




Zeile 216: Zeile 238:
als Orientierungskurve die zuvor erstellte Helix gewählt werden.
als Orientierungskurve die zuvor erstellte Helix gewählt werden.


[[Datei:Features_Rotationskörper_skizze_2_als_Roationsform_und_Orientierungskurve_die_Helix_auswählen.png|links|mini|250px|Die Abb.4 zeigt die Vorschau des Rotations-körpers über der ausgewählten "Helix".]]
[[Datei:Features_Rotationskörper_skizze_2_als_Roationsform_und_Orientierungskurve_die_Helix_auswählen.png|links|mini|250px|Die Abb.6 zeigt die Vorschau des Rotations-körpers über der ausgewählten "Helix".]]
 
 




Zeile 238: Zeile 262:
'''Schritt.5:''' Erstellen der Topfwand als Rotationskörper  
'''Schritt.5:''' Erstellen der Topfwand als Rotationskörper  


Bei diesem Projekt wurde eine Wandstärke von 3 mm gewählt.
Bei diesem Projekt wurde, wie in dem vorherigen Schritt ersichtlich, eine Wandstärke von 3 mm gewählt.


[[Datei:Vibrationswendelförderertopfwand.png|links|mini|250px|Abb.5 Stellt die Vorschau der Fördertopfwand als Rotationskörper über der Mittelachse des Kreises dar.]]
[[Datei:Vibrationswendelförderertopfwand.png|links|mini|250px|Abb.7 Stellt die Vorschau der Fördertopfwand als Rotationskörper über der Mittelachse des Kreises dar.]]




Zeile 267: Zeile 291:
Daraufhin wird das Feature "Linear ausgetragener Schnitt" aus der Werkzeugleiste ausgewählt und die gewünschte Länge des Schnittes eingetragen und bestätigt.   
Daraufhin wird das Feature "Linear ausgetragener Schnitt" aus der Werkzeugleiste ausgewählt und die gewünschte Länge des Schnittes eingetragen und bestätigt.   


  [[Datei:Wegschneiden_des_überstehenden_teils.png|links|mini|250px|Die Abb.6 zeigt die Vorschau des Features "Linear ausgetragener Schnitt"]]
  [[Datei:Wegschneiden_des_überstehenden_teils.png|links|mini|250px|Die Abb.8 zeigt die Vorschau des Features "Linear ausgetragener Schnitt"]]




Zeile 296: Zeile 320:
die Transportbahn für die Bauteile befindet, transportiert.  
die Transportbahn für die Bauteile befindet, transportiert.  


[[Datei:Feature_rotationskörper.png|links|mini|250px|Abb.7 Zeigt die skizzierte Geometrie als Rotationskörper mit ausgeblendeten Bauteilen.]]
[[Datei:Feature_rotationskörper.png|links|mini|250px|Abb.9 Zeigt die skizzierte Geometrie als Rotationskörper mit ausgeblendeten Bauteilen.]]




Zeile 327: Zeile 351:


*Bahnbreite ausreichend für zwei Bögen mit jeweils 90 Grad und unterschiedlichen Radien. Die Berechnung der Bahnbreite wurde äquivalent zur Berechnung der Transportlaufbahnbreite durchgeführt.
*Bahnbreite ausreichend für zwei Bögen mit jeweils 90 Grad und unterschiedlichen Radien. Die Berechnung der Bahnbreite wurde äquivalent zur Berechnung der Transportlaufbahnbreite durchgeführt.
*Übergabepunkt an das Förderband in Flucht zur Wendelförderertopf
*Übergabepunkt an das Förderband in Flucht zur Förderertopfmitte.




[[Datei:Auslaufbahn.png|links|mini|250px|Abb.8: Zeigt die konstruierte Auslaufbahn. <ref>[[Datei:Fördertopfauslauf.zip]] </ref> ]]
[[Datei:Auslaufbahn.png|links|mini|250px|Abb.10: Zeigt die konstruierte Auslaufbahn. <ref>[[Datei:Fördertopfauslauf.zip]] </ref> ]]




Zeile 353: Zeile 377:
----
----


=== Podest für den [http://193.175.248.52/wiki/index.php/Vibrationswendelförderer_mit_PiCo_Regelgerät_NA/B.4/65.3-bi-V1#Funktionsweise_des_Vibrationswendelf.C3.B6rderers Vibrationswendelförderer] ===
=== Podest für den [[Vibrationswendelförderer_mit_PiCo_Regelgerät_NA/B.4/65.3-bi-V1#Funktionsweise_des_Vibrationswendelf.C3.B6rderers | Vibrationswendelförderer]] ===
   
   
Um die Übergabe Höhe zu erreichen wurde in diesem Projekt zusätzlich ein Podest, was vorher ebenfalls in CAD konstruiert wurde, aus Pressspannplatten angefertigt. Um eine flexible Positionierung auf dem Montagetisch zu gewährleisten, wurden Langlöcher für die Befestigung mithilfe einer Oberfräse in die Grundplatte gefräst.
Um die Übergabehöhe zu erreichen wurde zusätzlich ein Podest, was vorher ebenfalls in CAD konstruiert wurde, aus Pressspannplatten angefertigt. Für eine möglichst flexible Positionierung und
[[Datei:Podest.png|links|mini|250px|In der Abb.9 ist das CAD-Modell des verwendeten Podestes dargestellt.<ref>[[Datei:Wendelfördererpodest.zip]] </ref> ]]


Befestigung auf dem Montagetisch zu gewährleisten wurden Langlöcher in die Grundplatte gefräst.


[[Datei:Podest.png|links|mini|250px|In der Abb.11 ist das CAD-Modell des verwendeten Podestes dargestellt.<ref>[[Datei:Wendelfördererpodest.zip]] </ref> ]]




Zeile 386: Zeile 411:




Hier finden Sie das, in diesem Projekt hergestellte, CAD-Model des Wendelförderertopfes mit der dazugehörigen Auslaufbahn. 
[[Datei:Vibrationswendelförderertopf+Auslauf.zip]]




=== Konstruierte Solidworks-Dateien ===
{| class="mw-datatable"
! style="font-weight: bold;" | Nr.:
! style="font-weight: bold;" | Bauteil:
! style="font-weight: bold;" | Datenblatt:
|-
|1.
|Fördertopfrohling
|[[Datei:Rohling.zip|</ref>[[Datei:Rohling.zip]]</ref>]]
|-
|2.
|Fördertopfauslauf
|[[Datei:Fördertopfauslauf.zip|</ref>[[Datei:Fördertopfauslauf.zip]]</ref>]]
|-
|3.
|Fördertopf+Auslaufbahn
|[[Datei:Vibrationswendelförderertopf+Auslauf.zip|</ref>[[Datei:Vibrationswendelförderertopf+Auslauf.zip]]</ref>]]
|-
|4.
|Wendelfördererpodest
|[[Datei:Wendelfördererpodest.zip|</ref>[[Datei:Wendelfördererpodest.zip]]</ref>]]
|-
|5.
|Legostein-Dummy
|[[Datei:Legostein_Dummy.zip|</ref>[[Datei:Legostein_Dummy.zip]]</ref>]]
|}
----
----


=== Lagerichtige Orientierung der Lego-Bausteine ===
=== Lagerichtige Orientierung der Lego-Bausteine ===


Wie bereits in der Aufgabenstellung beschrieben, sollte die Legosteine Lagerichtig orientiert werdern werden. Um diese Orientierung der Lego-Bausteine realisieren zu können, wurden
Wie bereits in der Aufgabenstellung beschrieben, sollten die Legosteine lagerichtig orientiert werden. Um diese Orientierung der Legosteine realisieren zu können wurden hierzu, die in Abb.12 und 13 dargestellten, zwei Schikanen an den Fördertopf angebracht.


hierzu zwei Schikanen, wie in Abb.10 dargestellt, an den Fördertopf angebracht. Für die Anfertigung der Schikanen wurden zwei Blechstreifen, mit den Abmessungen 50 mm x 10 mm, aus einem Zinkblech mit  
Für die Anfertigung der Schikanen wurden zwei Blechstreifen, mit den Abmessungen 50 mm x 10 mm, aus einem Zinkblech mit einer Stärke von 0,6 mm ausgeschnitten und anschließend umgeformt. Mit einem Rundschleifer und mit Zangen wurden die Schikanen anschließend so weit bearbeitet, bis eine zufriedenstellende Aussortierung gewährleistet werden konnte.


einer Stärke von 1 mm, mit einer Blechschere, ausgeschnitten und anschließend Umgeformt, mit einem Rundschleifer und mit Zangen bearbeitet bis eine zufriedenstellende Aussortierung funktionierte.
Die Schikane Nr.1 sortiert hochkant bzw. auf der Seite liegende Legosteine aus. Anschließend werden über die Schikane Nr.2 die Legosteine mit "Noppen" nach unten aussortiert.


Die Schikane Nr.1 sortiert Hochkant bzw. auf der Seite liegende Bausteine aus. Anschließend werden über die Schikane Nr.2 die Bausteine mit "Noppen" nach unten aussortiert.
[[Datei:Schikane_Nr.1.png|links|mini|650px|links| Abb.12 zeigt die Schikane Nr.1 und veranschaulicht die Funktionsweise.]][[Datei:Schikane_Nr.2.PNG|mini|650px|rechts| In Abb.13 ist die Schikane Nr.2 dargestellt.]]


[[Datei:Schikane_Nr.1.png|links|mini|650px|links| Abb.10 zeigt die Schikane Nr.1 und veranschaulicht die Funktionsweise.]][[Datei:Schikane_Nr.2.PNG|mini|650px|rechts| In Abb.11 ist die Schikane Nr.2 dargestellt.]]




Zeile 443: Zeile 492:
----
----


== Vibrationswendelförderer ==


Im folgenden Abschnitt wird auf die Verwendung, des im Artikel "[http://193.175.248.52/wiki/index.php/Vibrationswendelförderer_mit_PiCo_Regelgerät_NA/B.4/65.3-bi-V1#PiCo_Regelger.C3.A4t_NA.2FB.4.2F65.3-bi-V1 Vibrationswendelförderer mit PiCo Regelgerät NA/B.4/65.3-bi-V1]" beschriebenen Vibrationswendelförderers und des PiCo Regelgeräte, eingegangen.
== Ansteuerung des [[Vibrationswendelförderer_mit_PiCo_Regelgerät_NA/B.4/65.3-bi-V1#Funktionsweise_des_Vibrationswendelf.C3.B6rderers | Vibrationswendelförderers]]  bei besetztem Förderband ==
[[Datei:Steuereingang_Pico_Regelgerät.PNG|300px|thumb|Abb.14 Steuereingang PiCo Regelgerät]]
Für die Ansteuerung des [[Vibrationswendelförderer_mit_PiCo_Regelgerät_NA/B.4/65.3-bi-V1#Funktionsweise_des_Vibrationswendelf.C3.B6rderers | Vibrationswendelförderers]] wurde das Regelgerät über den Steuereingang (Siehe Abb.14) mit der "M12 Sensorleitung PVC 5-polig Stift gerade" an die [[Phoenix_Contact_AXC_Trainer_1050_PN | SPS]] angeschlossen.


----
Die Gruppe "[[Steuerung der automatischen Legostein-Montieranlage]]" übernahm die Programmierung.
=== Mögliche Änderungen am [http://193.175.248.52/wiki/index.php/Vibrationswendelförderer_mit_PiCo_Regelgerät_NA/B.4/65.3-bi-V1 Vibrationswendelförderer] ===
Hierbei schaltet die [[Phoenix_Contact_AXC_Trainer_1050_PN | SPS]] den [[Vibrationswendelförderer_mit_PiCo_Regelgerät_NA/B.4/65.3-bi-V1#Aufbau_des_Vibrationsf.C3.B6rderers | Vibrationsförderer]] ein, wenn sich kein Lego Stein im Messbereich des [[Optoelektronischer_Sensor_CY-100 | Reflektion-Lichttasters]] befindet.
[[Datei:Änderung_der_Amplitude_Vibrationswendelförderer.PNG|400px|thumb|Abb.8 Änderung der Amplitude]][[Datei:Änderung der Förderrichtung des Vibrationswendelförderers.PNG|300px|thumb|Abb.9 Änderung der Förderrichtung]]
1. '''Änderung der Amplitude:'''


*Die Amplitude kann über den Luftspalt zwischen dem Elektromagnet und der Förderrinne eingestellt werden (Siehe Abb.8, "blauer Rahmen"), hierzu müssen die vier Verschraubungen des Elektromagnetes gelöst werden(siehe rote Kreise in der Abbildung 8). Nun kann der Luftspalt mit einer Fühlerlehre eingestellt werden.
*Eine Verstärkung der Vibration, kann ebenfalls durch das Entfernen von zwei Flachfedern realisiert werden. (siehe Abb.9)


Die nachfolgende Abbildung zeigt die Anschlussbelegung des Steuereingangs:
[[Datei:Anschlussbelegung_Steuereingang_PiCo_Regelgerät.PNG|mini|500px|links|Abb.15: Anschlussbelegung des Steuereingangs des PiCo Regelgerätes]]




Zeile 466: Zeile 514:




2. '''Änderung der Förderrichtung:'''
*Die Förderrichtung kann durch eine Richtungsänderung der Flachfedern geändert werden (siehe Abb.9).
'''Wichtig:''' Die Förderrichtung ist entgegengesetzt der Einbaurichtung der Flachfedern.




Zeile 483: Zeile 524:




----


== Herausforderungen und Lösung ==


=== Vibrationsverlust durch den neuen Fördertopf ===
Eine der größten Herausforderungen dieses Projektes war es, das der Kunststoffwerkstoff "PLA" aus dem der Fördertopf gefertigt wurde die vom [[Vibrationswendelförderer_mit_PiCo_Regelgerät_NA/B.4/65.3-bi-V1#Aufbau_des_Vibrationsf.C3.B6rderers | Vibrationswendelförderer]] erzeugte Schwingung stark dämpfte.


*Um diese Herausforderung zu lösen, wurden wie in dem Artikel: "[[Vibrationswendelförderer_mit_PiCo_Regelgerät_NA/B.4/65.3-bi-V1#M.C3.B6gliche_.C3.84nderungen_am_Vibrationswendelf.C3.B6rderer | Vibrationswendelförderer mit PiCo Regelgerät NA/B.4/65.3-bi-V1]]" erläutert, zwei Fachfedern entfernt und die Amplitude durch Änderung des Luftspalts zwischen Förderrinne und Elektromagnet verstärkt, da durch konnte die Vibration so weit verstärkt werden, dass die Legosteine eine Vorwärtsbewegung erfuhren.




=== Falsche Förderrichtung ===
Durch das Verstärken der Vibration fiel auf, das die Legosteine in die falsche Richtung gefördert werden.


*Die Umkehrung der Förderrichtung konnte durch die Einbaurichtung der Flachfedern wie in dem Artikel: "[[Vibrationswendelförderer_mit_PiCo_Regelgerät_NA/B.4/65.3-bi-V1#M.C3.B6gliche_.C3.84nderungen_am_Vibrationswendelf.C3.B6rderer | Vibrationswendelförderer mit PiCo Regelgerät NA/B.4/65.3-bi-V1]]" beschrieben, geändert werden.


=== Montage der Auslaufbahn ===


[[Datei:Auslauf_Montage.PNG|400px|thumb|Abb.16 Montage der Auslaufbahn]]
Der Auslauf wurde ursprünglich so Konstruiert, dass dieser an den Ausgang des Fördertopfes geschraubt wird.
Beim ersten Versuch fiel auf, dass sich die Vibration durch die feste Verschraubung an das Ende der Auslaufbahn verlagerte, sodass die Legosteine nicht mehr gefördert wurden.


* Um diese Herausforderung zu lösen, wurde die Auslaufbahn mit einer Dämpfungslage vor den Fördertopfausgang angebracht und im Übergabebereich an das Förderband in ein U-Profil eingespannt. (Siehe Abb.16)






----
=== Ansteuerung des [http://193.175.248.52/wiki/index.php/Vibrationswendelförderer_mit_PiCo_Regelgerät_NA/B.4/65.3-bi-V1#Funktionsweise_des_Vibrationswendelf.C3.B6rderers Vibrationswendelförderers]  bei besetztem Förderband ===
[[Datei:Steuereingang_Pico_Regelgerät.PNG|300px|thumb|Abb.10 Steuereingang PiCo Regelgerät]]
Für die Abschaltung des [http://193.175.248.52/wiki/index.php/Vibrationswendelförderer_mit_PiCo_Regelgerät_NA/B.4/65.3-bi-V1#Funktionsweise_des_Vibrationswendelf.C3.B6rderers Vibrationswendelförderers] wurde das Regelgerät über den Steuereingang (Siehe Abbildung.10) mit der "M12 Sensorleitung PVC 5-polig Stift gerade" an die [http://193.175.248.52/wiki/index.php/Phoenix_Contact_AXC_Trainer_1050_PN SPS] angeschlossen.


Die Gruppe "[[Steuerung der automatischen Legostein-Montieranlage]]" übernahm die Programmierung.
Hierbei schaltet die [http://193.175.248.52/wiki/index.php/Phoenix_Contact_AXC_Trainer_1050_PN SPS] den [http://193.175.248.52/wiki/index.php/Vibrationswendelförderer_mit_PiCo_Regelgerät_NA/B.4/65.3-bi-V1#Aufbau_des_Vibrationsf.C3.B6rderers Vibrationsförderer] ein, wenn sich kein Lego Stein im Messbereich des [http://193.175.248.52/wiki/index.php/Optoelektronischer_Sensor_CY-100 Reflektion-Lichttaster] befindet.




Die nachfolgende Abbildung zeit die Anschlussbelegung des Steuereingangs:
[[Datei:Anschlussbelegung_Steuereingang_PiCo_Regelgerät.PNG|mini|500px|links|Abb.11: Anschlussbelegung des Steuereingangs des PiCo Regelgerätes]]




Zeile 528: Zeile 573:
----
----


== Herausforderungen und Lösung ==
== Schnittstellen zu anderen Projektteams ==
1. Eins der größten Herausforderungen dieses Projektes war es, das der Kunststoff "PLA" aus dem der Fördertopf gefertigt wurde die vom [http://193.175.248.52/wiki/index.php/Vibrationswendelförderer_mit_PiCo_Regelgerät_NA/B.4/65.3-bi-V1#Aufbau_des_Vibrationsf.C3.B6rderers Vibrationswendelförderers] erzeugte Schwingung schluckte.
 
*Um diese Herausforderung zu lösen wurde der [http://193.175.248.52/wiki/index.php/Vibrationswendelförderer_mit_PiCo_Regelgerät_NA/B.4/65.3-bi-V1#Aufbau_des_Vibrationsf.C3.B6rderers Vibrationswendelförderer] verändert. Durch das entfernen von zwei Fachfedern und Anpassung der Amplitude (Siehe Punkt:2.2.1 "Mögliche Änderungen am Vibrationswendelförderer"), konnte die erzeugte Vibration soweit verstärkt werden, dass die Lego Steine eine Vorwärtsbewegung erfahren.
 
2. Durch das Verstärken der Vibration viel auf, das die Lego Steine in die falsche Richtung gefördert werden.
 
*Die Umkehrung der Förderrichtung, konnte durch die Einbaurichtung der Flachfedern wie unter Punkt: 2.2.1 "Mögliche Änderungen am Vibrationswendelförderer" beschrieben, geändert werden.
 
 
 
 
 
 
 
 
 
 
 
 
 


*[[Förderung der Legosteine und Rücktransport in den Vibrationswendelförderer]]
*[[Steuerung der automatischen Legostein-Montieranlage]]


== Fazit ==


Im Verlauf dieses Projektes konnte gezeigt werden, dass mit Hilfe eines solchen Systems je nach Geometrie des Fördertopfes und der angebundenen Komponenten unterschiedlichste Bauteile gespeichert, gefördert und vereinzelt werden können.


Der Transport der Bauteile konnte in einer lagerichtigen Position sowie der Übergabe an das Förderband erfolgreich, mit den hier vorgestellten Komponenten, realisiert werden.


== Ausblick ==


'''Mögliche Verbesserungen:'''


'''1.''' Über eine Optimierung der Fördertopfoberfläche, insbesondere der Förderbahn und Topfwand, könnte eine Minimierung der Verkantungsmöglichkeiten realisiert werden.


'''Lösungsmöglichkeiten:''' 3D-Druck engmaschiger anfertigen mit anschließendem Schleifen der Oberflächen, nachträgliche Oberflächenbeschichtung durch z.B. eine Lackierung, Herstellung der Bauteile über ein Herstellungsverfahren das eine bessere Oberflächengüte verspricht wie z.B. Feingießen, Fräsen...etc.




'''2.''' Durch eine weitere Optimierung der Schikanenkonstruktion könnte eine effektivere Sortierung erzielt werden.


'''Lösungsmöglichkeiten:''' Konstruktion der Schikanen als 3D-Bauteile mit anschließender Simulation -> Optimierung bereits vor der Ausführung




'''3.''' Um die zu fördernde Menge der Bausteine zu erhöhen und den Nachtfülltakt zu minimieren wäre eine Steigerung des Fördertopfvolumens möglich. Dies kann über eine Verlängerung der Förderlaufbahn und somit der Fördertopfhöhe realisiert werden.


'''Lösungsmöglichkeit:''' Erhöhung der Umdrehungsanzahl oder der Steigunghöhe der konstruierten "Spirale/Helix" - Windungen. (siehe [[Zuführung_der_Legosteine_mittels_Vibrationswendelförderer#3D-Modellierung_des_F.C3.B6rdertopfes | Schritt 3: Konstruktion der Helix]])




----
'''4.''' Die Verbindungstelle zwischen Fördertopf und Auslauf könnte zusätzlich modifiziert werden.


== Schnittstellen zu anderen Projektteams ==
'''Lösungsmöglichkeit:''' Einsatz einer losen Lagerung zwischen Fördertopf und Fördertopfauslauf.
 
*[[Förderung der Legosteine und Rücktransport in den Vibrationswendelförderer]]
*[[Steuerung der automatischen Legostein-Montieranlage]]
 
== Fazit ==
 
Mit Hilfe eines solchen Systems können je nach Geometrie des Fördertopfes und der angebundenen Komponenten unterschiedlichste Bauteile gespeichert, gefördert und vereinzelt werden.
 
Der Transport der Bauteile in einer lagerichtigen Position sowie die Übergabe an das Förderband, mit den hier vorgestellten Komponenten, funktioniert.
 
== Ausblick ==
 
Verbesserung:
 
* Feinere Materialoberfläche von Vorteil  = Minimierung der Verkantungsmöglichkeiten
* Schikanen Konstruktion könnte verfeinert werden
* Fördertopfvolumen kann erhöht werden um die Bausteinmenge zu erhöhen
* Verbindungstelle zwischen Fördertopf und Auslauf kann noch modifiziert werden


== Dateiverzeichnis ==
== Dateiverzeichnis ==
<references />
<references />


'''Hauptartikel:'''[http://193.175.248.52/wiki/index.php/Automatische_Legostein-Montieranlage Automatische Legostein-Montieranlage]
 
'''Hauptartikel:'''[[utomatische_Legostein-Montieranlage Automatische | Legostein-Montieranlage]]

Aktuelle Version vom 12. September 2021, 10:03 Uhr

Hauptartikel: Automatische Legostein-Montieranlage


Autor: Daniel Freitag, Markus Skrobol

Betreuer: Prof. Dr. Mirek Göbel

Abb.1 Anlage Vibrationswendelförderer




Einleitung

Dieser Artikel entstand im Rahmen des Produktionstechnik Praktikums im 7 Semester des Studiengangs Mechatronik. Ziel des Beitrags ist es, eine nachhaltige Dokumentation zu schaffen, welche das weitere Arbeiten am Projekt ermöglicht und die erreichten Ergebnisse festhält.[[Datei:Funktionsplan_Abschnitt_Gruppe.1.png|thumb|mini|250px|Abb.2 Zeigt den für diese Gruppe relevanten Ausschnitt des Funktionsablaufplans9].

Dieser Artikel handelt über ein Teilprojekt des Hauptartikels:" Automatische Legostein-Montieranlage". Das Teilprojekt umfasste, wie in Abb.2 zusehen, die Punkte eins bis sechs des dargestellten Funktionsablaufplans im Hauptartikelabschnitt "Strukturierung der Aufgabe".










Aufgabestellung

Die Aufgabe dieser Projektgruppe war es, unsortierte Legosteine lagerichtig mit"Noppen" nach oben & lange Seite nach außen zu orientieren, zu transportieren und diese vereinzelt an die Gruppe "Förderung der Legosteine und Rücktransport in den Vibrationswendelförderer" zu übergeben.

Hierzu musste ein neuer Fördertopf entworfen und mittels 3D-Druckverfahren hergestellt werden. Des Weiter sollte die Abschaltung des Vibrationswendelförderers bei besetztem Förderband realisiert werden.

Vorbereitungen

Zu Beginn des Projektes mussten folgende Vorbereitungen getroffen werden:


Verwendete Bauteile

Nr.: Artikel: Artikelbeschreibung: Menge in [Stück] Datenblatt
1. Vibrationswendelförderer & PiCo Regelgerät Zum Befördern und ordnen der Legosteine 1 Datei:PiCo Regelgerät.PDF
2. M12 Sensorleitung Zum Anschluss des Vibrationswendelförderers an die SPS 1 Datei:M12 Sensorleitung PVC 5-polig Stift gerade.pdf
3. Reflektion-Lichttaster Zur Ermittlung ob das Förderband besetzt ist 1 Datei:Optoelektronischer Sensor CY-100.pdf

Konstruktion

Anforderungen an die Konstruktion

Es wurden folgende Maße und Bedingungen, für die Konstruktion des Förderertopfes, festgelegt:

  • maximale Höhe des Fördertopfrandbereiches: 230 mm
  • Übergabehöhe der Auslaufbahn an das Förderband: 205 mm
  • maximaler Durchmesser: 150 mm
  • Auslaufposition der Lego-Bausteine: mittig, da die Rückführung der Bausteine über eine Linearachse realisiert werden sollte.
  • Überstehende Bauteile sollten, wenn möglich mit 45° Schrägen unterstützt werden, um den 3D-Druck des Bauteils zu verkürzen.

Herausforderungen an die Konstruktion:

  • Konstruktion des Topfes von innen nach außen.
  • Durchführung einiger Änderungen, durch den Ausfall eines 3D-Druckers auf dem die ursprüngliche CAD-Datei ausgelegt wurde.
  • Bahnbreitenauslegung in der Förderbahn innerhalb des Fördertopfes und der Auslaufbahn.

3D-Modellierung des Fördertopfes

An dieser Stelle sollen die wichtigsten Schritte zur Anfertigung des, in diesem Projekt verwendeten, Topfrohlings und der Auslaufbahn beschrieben werden. Die Bauteile wurden hierzu mit der Software: Solidworks in der Version:2016 konstruiert.

Schritt.1: Neue Skizze auf einer beliebigen Ebene erstellen.



Schritt.2: Kreis aus dem Ursprung der Skizze zeichnen und mit dem gewünschten Durchmesser des Topfes bemaßen.

Abb.3 Zeigt wie ein Kreis aus dem Koordinatenursprung skizziert wird.











Schritt.3: Konstruktion der Helix

In die Feature Auswahl wechseln und anschließend rechts in der Werkzeugleiste "Kurven" daraus den Reiter "Helix und Spirale" auswählen.

Abb.4 Zeigt den auszuwählenden Reiter "Helix & Spirale" aus dem Feature "Kurven"










In diesem Feature können nun unterschiedliche Einstellungen vorgenommen werde.

In Abb.5 ist die Kurve der Helix dargestellt.










Für die Konstruktion des verwendeten Fördertopfes wurden folgende Einstellungen verwendet:

  • Steigungshöhe: 35 mm
  • Umdrehungen: 1 (Skalierung der Höhe und des Auslaufübergabewinkels)
  • Ausgangswinkel: 90 Grad (erleichtert die nachfolgenden Konstruktionsschritte)
  • Verjüngung der Spirale: 0 Grad (Einfacher für den 3D-Druck)


Schritt.4: Konstruktion der Transportlaufbahn für die Lego-Bausteine mit Verknüpfung an die "Helix/Spirale"

Für diesen Schritt wurde die Förderbahnbreite mit folgender Kreisfunktion berechnet:


                                         


Benötigte Parameter für die Berechnung:

  • Radius
  • halbe Bauteillänge des Bauteils.

In diesem Fall:

                                                         
                                         
                                            
                                         
                                         
                                         
                                         


Durch Einsetzen erhält man:

                                         


Wegen der Steinlänge von 32 mm ergibt dies folgende Berührungspunkte der Legosteinkanten mit dem Innenradius des Fördertopfes:

                                               
                                         

Die Höhe von ist auch gleichzeitig die Distanz zwischen der Legosteinmitte und dem Innenradius des Fördertopfes.

Sodass gilt:

                                          
                                         


Daraufhin kann die Skizze erstellt und die gewünschte Geometrie (hier: 21 mm - 3 mm(geplante Wandstärke) = 18 mm Bahnbreite) konstruiert werden.

Anschließend wird als Feature "Rotationskörper" ausgewählt und als Rotationsform kann nun die Skizze ausgewählt und

als Orientierungskurve die zuvor erstellte Helix gewählt werden.

Die Abb.6 zeigt die Vorschau des Rotations-körpers über der ausgewählten "Helix".











Schritt.5: Erstellen der Topfwand als Rotationskörper

Bei diesem Projekt wurde, wie in dem vorherigen Schritt ersichtlich, eine Wandstärke von 3 mm gewählt.

Abb.7 Stellt die Vorschau der Fördertopfwand als Rotationskörper über der Mittelachse des Kreises dar.











Schritt.6: "Wegschneiden" der überstehenden Förderbahn.

Hierfür muss eine neue Skizze auf der unteren Fläche der Wendelfördererwand erstellt und aus dem Ursprung ein Kreis mit dem Durchmesser des Topfes skizziert werden.

Daraufhin wird das Feature "Linear ausgetragener Schnitt" aus der Werkzeugleiste ausgewählt und die gewünschte Länge des Schnittes eingetragen und bestätigt.

Die Abb.8 zeigt die Vorschau des Features "Linear ausgetragener Schnitt"











Schritt.7 Konstruktion des Topfbodens

Hierzu wurde in einer neuen Skizze die Form des Bodens skizziert, in diesem Fall wurde eine Kegelform gewählt und als Rotationskörper

erstellt. Durch die gewählte Geometrie des Bodens werden die Bauteile nach dem Einfüllen in den Topf an den Randbereich, in dem sich

die Transportbahn für die Bauteile befindet, transportiert.

Abb.9 Zeigt die skizzierte Geometrie als Rotationskörper mit ausgeblendeten Bauteilen.











Hier finden Sie ein Rohling des Fördertopfes als Referenzbauteil:

Datei:Rohling.zip


Konstruktion der Auslaufbahn

Für die Konstruktion der Auslaufbahn wurden folgende Punkte beachtet:

  • Bahnbreite ausreichend für zwei Bögen mit jeweils 90 Grad und unterschiedlichen Radien. Die Berechnung der Bahnbreite wurde äquivalent zur Berechnung der Transportlaufbahnbreite durchgeführt.
  • Übergabepunkt an das Förderband in Flucht zur Förderertopfmitte.


Abb.10: Zeigt die konstruierte Auslaufbahn. [4]












Podest für den Vibrationswendelförderer

Um die Übergabehöhe zu erreichen wurde zusätzlich ein Podest, was vorher ebenfalls in CAD konstruiert wurde, aus Pressspannplatten angefertigt. Für eine möglichst flexible Positionierung und

Befestigung auf dem Montagetisch zu gewährleisten wurden Langlöcher in die Grundplatte gefräst.

In der Abb.11 ist das CAD-Modell des verwendeten Podestes dargestellt.[5]
















Konstruierte Solidworks-Dateien

Nr.: Bauteil: Datenblatt:
1. Fördertopfrohling [[Datei:Rohling.zip|</ref>Datei:Rohling.zip</ref>]]
2. Fördertopfauslauf Datei:Fördertopfauslauf.zip
3. Fördertopf+Auslaufbahn Datei:Vibrationswendelförderertopf+Auslauf.zip
4. Wendelfördererpodest Datei:Wendelfördererpodest.zip
5. Legostein-Dummy Datei:Legostein Dummy.zip

Lagerichtige Orientierung der Lego-Bausteine

Wie bereits in der Aufgabenstellung beschrieben, sollten die Legosteine lagerichtig orientiert werden. Um diese Orientierung der Legosteine realisieren zu können wurden hierzu, die in Abb.12 und 13 dargestellten, zwei Schikanen an den Fördertopf angebracht.

Für die Anfertigung der Schikanen wurden zwei Blechstreifen, mit den Abmessungen 50 mm x 10 mm, aus einem Zinkblech mit einer Stärke von 0,6 mm ausgeschnitten und anschließend umgeformt. Mit einem Rundschleifer und mit Zangen wurden die Schikanen anschließend so weit bearbeitet, bis eine zufriedenstellende Aussortierung gewährleistet werden konnte.

Die Schikane Nr.1 sortiert hochkant bzw. auf der Seite liegende Legosteine aus. Anschließend werden über die Schikane Nr.2 die Legosteine mit "Noppen" nach unten aussortiert.

Abb.12 zeigt die Schikane Nr.1 und veranschaulicht die Funktionsweise.
In Abb.13 ist die Schikane Nr.2 dargestellt.






















Ansteuerung des Vibrationswendelförderers bei besetztem Förderband

Abb.14 Steuereingang PiCo Regelgerät

Für die Ansteuerung des Vibrationswendelförderers wurde das Regelgerät über den Steuereingang (Siehe Abb.14) mit der "M12 Sensorleitung PVC 5-polig Stift gerade" an die SPS angeschlossen.

Die Gruppe "Steuerung der automatischen Legostein-Montieranlage" übernahm die Programmierung. Hierbei schaltet die SPS den Vibrationsförderer ein, wenn sich kein Lego Stein im Messbereich des Reflektion-Lichttasters befindet.


Die nachfolgende Abbildung zeigt die Anschlussbelegung des Steuereingangs:

Abb.15: Anschlussbelegung des Steuereingangs des PiCo Regelgerätes












Herausforderungen und Lösung

Vibrationsverlust durch den neuen Fördertopf

Eine der größten Herausforderungen dieses Projektes war es, das der Kunststoffwerkstoff "PLA" aus dem der Fördertopf gefertigt wurde die vom Vibrationswendelförderer erzeugte Schwingung stark dämpfte.

  • Um diese Herausforderung zu lösen, wurden wie in dem Artikel: " Vibrationswendelförderer mit PiCo Regelgerät NA/B.4/65.3-bi-V1" erläutert, zwei Fachfedern entfernt und die Amplitude durch Änderung des Luftspalts zwischen Förderrinne und Elektromagnet verstärkt, da durch konnte die Vibration so weit verstärkt werden, dass die Legosteine eine Vorwärtsbewegung erfuhren.


Falsche Förderrichtung

Durch das Verstärken der Vibration fiel auf, das die Legosteine in die falsche Richtung gefördert werden.

Montage der Auslaufbahn

Abb.16 Montage der Auslaufbahn

Der Auslauf wurde ursprünglich so Konstruiert, dass dieser an den Ausgang des Fördertopfes geschraubt wird. Beim ersten Versuch fiel auf, dass sich die Vibration durch die feste Verschraubung an das Ende der Auslaufbahn verlagerte, sodass die Legosteine nicht mehr gefördert wurden.

  • Um diese Herausforderung zu lösen, wurde die Auslaufbahn mit einer Dämpfungslage vor den Fördertopfausgang angebracht und im Übergabebereich an das Förderband in ein U-Profil eingespannt. (Siehe Abb.16)














Schnittstellen zu anderen Projektteams

Fazit

Im Verlauf dieses Projektes konnte gezeigt werden, dass mit Hilfe eines solchen Systems je nach Geometrie des Fördertopfes und der angebundenen Komponenten unterschiedlichste Bauteile gespeichert, gefördert und vereinzelt werden können.

Der Transport der Bauteile konnte in einer lagerichtigen Position sowie der Übergabe an das Förderband erfolgreich, mit den hier vorgestellten Komponenten, realisiert werden.

Ausblick

Mögliche Verbesserungen:

1. Über eine Optimierung der Fördertopfoberfläche, insbesondere der Förderbahn und Topfwand, könnte eine Minimierung der Verkantungsmöglichkeiten realisiert werden.

Lösungsmöglichkeiten: 3D-Druck engmaschiger anfertigen mit anschließendem Schleifen der Oberflächen, nachträgliche Oberflächenbeschichtung durch z.B. eine Lackierung, Herstellung der Bauteile über ein Herstellungsverfahren das eine bessere Oberflächengüte verspricht wie z.B. Feingießen, Fräsen...etc.


2. Durch eine weitere Optimierung der Schikanenkonstruktion könnte eine effektivere Sortierung erzielt werden.

Lösungsmöglichkeiten: Konstruktion der Schikanen als 3D-Bauteile mit anschließender Simulation -> Optimierung bereits vor der Ausführung


3. Um die zu fördernde Menge der Bausteine zu erhöhen und den Nachtfülltakt zu minimieren wäre eine Steigerung des Fördertopfvolumens möglich. Dies kann über eine Verlängerung der Förderlaufbahn und somit der Fördertopfhöhe realisiert werden.

Lösungsmöglichkeit: Erhöhung der Umdrehungsanzahl oder der Steigunghöhe der konstruierten "Spirale/Helix" - Windungen. (siehe Schritt 3: Konstruktion der Helix)


4. Die Verbindungstelle zwischen Fördertopf und Auslauf könnte zusätzlich modifiziert werden.

Lösungsmöglichkeit: Einsatz einer losen Lagerung zwischen Fördertopf und Fördertopfauslauf.

Dateiverzeichnis


Hauptartikel: Legostein-Montieranlage