

KEY BENEFITS

- Fully programmable, open and autonomous: make the most of a full integration of state-of-the-art hardware and software
- Easy to use and understand: achieve better project results and improve learning effectiveness
- >> Attractive and motivating: highly increase and catch audience attention

USE CASES

- >> STEM (Science, Technology, Engineering and Mathematics) training and exercises
- >> Scientific researches in autism, personal assistance...
- >> Communication tool for events such as opening house days

NAO HUMANOID

ENHANCED AUDIO AND VISUAL CAPABILITIES

>> Camera

Thanks to improved camera sensors, we provide higher sensitivity in VGA for better low light perception. For image processing work on the robot CPU, you can use up to 30 images/second in HD resolution. NAO can move the head by 239°horizontally and by 68° vertically, and his camera can see at 61° horizontally and 47°vertically. Result: NAO has a great capacity to sense his environment.

>> Object Recognition

NAO has the capacity to recognize a large quantity of objects. Once the object is saved thanks to Choregraphe software, if he sees it again, NAO is able to recognize and say what it is.

>> Face Detection and Recognition

It's one of the best known features for interaction. NAO can detect and learn a face in order to recognize it next time.

>> Text to Speech

NAO is able to speak up to 19 languages. With a "say box" in Choregraphe you can insert text and modify voice parameters as you wish. NAO will say the text correctly, with the right punctuation and intonation.

>> Automatic Speech Recognition

Speech recognition is at the heart of intuitive humanrobot interaction. That's why we have chosen the best technological partner, Nuance, to develop stable and powerful speech recognition. NAO is now able to hear you from 2 meters away, recognize a complete sentence or just few words in the sentence. Result: more fluidity and natural conversations.

>> Sound Detection and Localization

Our environment is made of sounds that NAO, like us, is able to detect and localize in the space thanks to microphones all around his head.

NATURAL MOTION REFLEXES

>> Smart Stiffness

A unique feature which automatically adapts the power needed by the motors during the movements of the robot. Result: better use of the drive components as well as energy savings for the battery.

>> Fall Manager

NAO may fall, but we taught him how to stand up by himself. We went even further and provided him with a fall detection system: before hitting the ground, NAO protects himself with his arms.

>> Anti Self collision

This motion feature prevents NAO's arms from colliding with the rest of his body. NAO always knows the position of his head, torso, legs and arms: he avoids accidental and unwanted limb collisions.

>> Resource Manager

NAO's biggest challenge is to merge and order conflicting commands. He's able to interrupt/stop or adjust the behavior in progress before executing a new required behavior.

NAO HUMANOID

EXAMPLES OF APPLICATIONS

RESEARCH

- >> Human Robot Interaction
- >> Perception & Cognition
- Object Category Recognition & Detection
- >> Modeling Expressive Gestures
- >> Localization & Navigation
- >> Movement Synchronization of Robot
- >> Structure & Motion Analysis
- >> Psychology & Social Robotics
- >> Artificial Intelligence

EDUCATION

- >> Programming
- Math & Physics Concepts for Robotic Applications
- >> Motion Planning
- Introduction to Object/Speech Recognition & Detection

ASIA

- >> Create Games & Stories
- >> Mechatronics
- >> Automation

REFERENCES

EUROPE

- » Paris Descartes University
- >> University of Bremen
- >> University of Hertfordshire
- > University of Jaume
- » Science Museum of London
- High School Tech of Nîmes

NORTH AMERICA

- Massachusetts Institute of Technology
- Harvard University
- >> Carnegie Mellon University
- University of Texas, Austin
- » Science Museum of Chicago » Science Museum of Shanghai

>> University of Tokyo

» Shanghai Jiao Tong University

» National University of Seoul

» National Taiwan University

>> New South Wales University

» High School Central Tech Erie

HUMANOID NA

TECHNICAL SPECIFICATIONS

ELECTRICAL

INPUT OUTPUT	100 to 240 Vac - 50/60Hz - Max 1.2A 25.2 Vdc - 2A	
BATTERY	Туре	Lithium-Ion
	Nominal voltage/capacity	21.6V / 2.15Ah

Nominal voltage/capacit	y 21.6V / 2.15Ah
Max charge voltage	24.9V
Recommended charge	current 2A
Max charge/discharge cu	urrent 3.0A / 2.0A
Energy	27.6Wh
Charging duration	5h
Autonomy	60min (Active use)
	90min (Normal use)

CONSTRUCTION

DIMENSION (H×D×W) 573×275×311mm / 22.5x10.8x12.2 inch WEIGHT 5.2kg / 11.4 lb CONSTRUCTION MATERIAL ABS-PC / PA-66 / XCF-30

LANGUAGES

TEXT TO SPEECH &
AUTOMATIC SPEECH
RECOGNITION

Arabic, Brazilian (Portuguese), Chinese, Czech, Danish, Dutch, English, Finnish, French, German, Italian, Japanese, Korean, Polish, Portuguese, Spanish, Swedish, Russian, Turkish

VISION

CAMERAS		×2 on fron	:		
Sensor mod	el	MT9M114			
Sensor type		SOC Image	e Sensor		
IMAGING AF	RAY R	esolution			1.22MP
	0	ptical forma	t		1/6inch
	A	ctive Pixels	(H×V)	1:	288×968
SENSITIVITY	γ P	'ixel size			1.9µm
	D	ynamic rang	e		70dB
	S	ignal/Noise ra	itio (max)		37dB
	R	esponsivity		2.24 V/lux-se	c (960p)
				8.96 V/lux-se	ec (VGA)
OUTPUT	С	amera outpi	ut	960	o@30fps
	D	ata Format			YUV422
	S	hutter type	ERS (Electronic Rolling	Shutter)
VIEW	F	ield of view	72.6°DF	OV (60.9°HFOV, 4	7.6VFOV)
	F	ocus range		30cm -	- infinity
	F	ocus type		Fixe	ed focus
FRAMERATE	Ξ				
Resolution	Embedde	ed Gigabit E	thernet	100Mb Ethernet	Wifi g
160×120px	30fps	30f	ps	30fps	30fps

320×240px 30fps 30fps 30fps 11fps 640×480px 30fps 30fps 2.5fps 12fps 1280×960px 29fps 10fps 3fps 0.5fps

Note: using the video stream in remote highly depends on the network and the video resolution chosen. All frame rates depend on the CPU usage. Values are calculated with a CPU fully dedicated to images gathering.

MOTHER BOARD

CPU PROCESSOR	ATOM Z530	
	Cache memory	512KB
	Clock speed	1.6GHZ
	FSB speed	533mHz
RAM	1GB	
FLASH MEMORY	2GB	
MICRO SDHC	8GB	

CONNECTION

ETHERNET	1×RJ45 - 10/100/1000 BASE T
WIFI	IEEE 802.11b/g/n

AUDIO

LOUD SPEAKERS	×2 lateral	
	Diameter	36mm
	Impedance	8ohms
	Sp level	87dB/w +/- 3dB
	Freq range	up to ~20kHz
	Input	2W
MICROPHONE	×4 on the head	
	Sensitivity	~40 +/-3dB
	Frequency range	20Hz-20kHz
	Signal/noise ratio	58dBA

NAO HUMANOID

TECHNICAL SPECIFICATIONS

IR

NUMBER WAVELENGTH EMISSION ANGLE POWER ×2 on front 940nm +/-60° 8mW/sr

SONAR

EMITTERS	×2 on front
RECEIVERS	×2 on front
FREQUENCY	40kHz
SENSITIVITY	-86dB
RESOLUTION	1cm
DETECTION RANGE	0.25m to 2.55m
EFFECTIVE CONE	60°

INERTIAL UNIT

GYROMETER	×2	
	Axis	1 per gyrometer
	Precision	5%
	Angular speed	~500°/s
ACCELEROMETER	×1	
	Axis	3
	Precision	1%
	Acceleration	~2g

SOFTWARE

OPEN NAO	Embedded GNU/Linux Distribution based on Gentoo
ARCHITECTURE	×86
PROGRAMMING	Embedded: C++ / Python Remote: C++ / Python / .NET / Java / MatLab

CONTACT SENSOR

	NAO HUMANOID	
Chest Button	\checkmark	
Foot Bumper	\checkmark	
Tactile Head	\checkmark	
Tactile Hand	\checkmark	

FSR (FORCE SENSITIVE RESISTORS)

0 to 110N ×4 per feet

POSITION SENSORS

NAO HUMANOID			
MRE (Magnetic	×36		
Rotary Encoder)	Using hall effect sensor technology		
	Precision:	12bits / 0.1°	

LEDS

RANGE

PLACEMENT	QUANTITY	DESCRIPTION
Tactile Head	×12	16 Blue levels
Eyes	2×8	RGB FullColor
Ears	2×10	16 Blue levels
Chest button	×1	RGB FullColor
Feet	2×1	RGB FullColor

DEGREES OF FREEDOM

	NAO HUMANOID
HEAD	×2 dof
ARM (IN EACH)	×5 dof
PELVIS	×1 dof
LEG (IN EACH)	×5 dof
HAND (IN EACH	H) ×1 dof

NAU HUMANOID

MOTOR SPECIFICATIONS

MOTOR TYPE Brush DC Coreless

POSITION OF MOTORS

HEAD JOINTS	HeadYaw HeadPitch	МОТОR Туре 3 Туре 3	REDUCTION RATIO Type A Type B
ARM JOINTS	ShoulderPitch	Type 3	Type A
	ShoulderRoll	Type 3	Type B
	ElbowYaw	Type 3	Type A
	ElbowRoll	Type 3	Type B
	WristYaw	Type 2	Type C
	Hand	Type 2	Type D
LEG JOINTS	HipYawPitch	Type 1	Type A
	HipRoll	Type 1	Type A
	HipPitch	Type 1	Type B
	KneePitch	Type 1	Type B
	AnklePitch	Type 1	Type B
	AnkleRoll	Type 1	Type A

DESCRIPTION OF THE MOTORS

SPEED REDUCTION RATIO

	MOTOR TYPE 1	MOTOR TYPE 2	MOTOR TYPE 3
Model	22NT82213P	17N88208E	16GT83210E
No load speed	8300rpm ±10%	8400rpm ±12%	10700rpm ±10%
Stall torque	68mNm ±8%	9.4mNm ±8%	14.3mNm ±8%
Continuous torque	16.1mNm max	4.9mNm max	6.2mNm max

SPEED REDUCTION RATIO

ΤΥΡΕ Α				TYPE B			
	MOTOR TYP	PE 1 MC	TOR TYPE 3		MOTOR TYPE	1 MOTOR TYPE 3	
Reduction ratio	201.3	150).27	Reduction ratio	130.85	173.22	
SPEED REDUCTION RATIO TYPE C		SPEED REDUCTION RATIO TYPE D					
	MOTOR TYP	PE 2			MOTOR TYPE	2	
Reduction ratio	50.61			Reduction ratio	36.24		
CERTIFICATIONS		REGION		CLASSIFICATION	N		
& APPROVALS		Europe		CE (Declaration	of Conformity)		
		USA		FCC			
		ELECTROMAGNETIC COMPATIBILI					
					EN 62311 : 2008 / FCC PART15, Class A IEC 60950-1:2005 (2nd edition)		
		SAFETY		IEC 60950	I-1:2005 (2nd editio	n)	

WWW.ALDEBARAN-ROBOTICS.COM ©2012 Aldebaran Robotics.November 2012. Data are subject to change without notice.

HeadYaw [3][A] HeadPitch [3][B]

(C

ShoulderPitch [3][A]

ShoulderRoll [3][B]

ElbowYaw [3][A] ElbowRoll [3][B]

- HipYawPitch [1][A]

WristYaw [2][C] Hand [2][D]

HipRoll [1][A] HipPitch [1][B]

KneePitch [1][B]

AnklePitch[1][B] AnkleRoll[1][A]

Legend: Joint Name[Motor Type][Reductor Type]